Solveeit Logo

Question

Question: If $f(x) = ax^2+bx+c$ and $g(x) = -ax^2+bx+c$, then $f(x) \cdot g(x) = 0$ has...

If f(x)=ax2+bx+cf(x) = ax^2+bx+c and g(x)=ax2+bx+cg(x) = -ax^2+bx+c, then f(x)g(x)=0f(x) \cdot g(x) = 0 has

A

Two real roots

B

at least two real roots

C

four real roots

D

at most two real roots

Answer

at least two real roots

Explanation

Solution

The equation f(x)g(x)=0f(x) \cdot g(x) = 0 implies f(x)=0f(x) = 0 or g(x)=0g(x) = 0. The discriminant of f(x)=ax2+bx+c=0f(x) = ax^2+bx+c=0 is Δ1=b24ac\Delta_1 = b^2-4ac. The discriminant of g(x)=ax2+bx+c=0g(x) = -ax^2+bx+c=0 is Δ2=b24(a)(c)=b2+4ac\Delta_2 = b^2-4(-a)(c) = b^2+4ac. For real roots, we need Δ10\Delta_1 \ge 0 or Δ20\Delta_2 \ge 0. If ac>0ac > 0, then b2+4ac>b20b^2+4ac > b^2 \ge 0, so Δ2>0\Delta_2 > 0. If ac<0ac < 0, then b24ac>b20b^2-4ac > b^2 \ge 0, so Δ1>0\Delta_1 > 0. If ac=0ac = 0, then either a=0a=0 or c=0c=0. If a=0a=0, f(x)=bx+cf(x)=bx+c and g(x)=bx+cg(x)=bx+c, so f(x)g(x)=(bx+c)2=0f(x)g(x)=(bx+c)^2=0 has one root if b0b \ne 0, or no roots if b=0,c0b=0, c \ne 0. If c=0c=0, f(x)=ax2+bxf(x)=ax^2+bx and g(x)=ax2+bxg(x)=-ax^2+bx. f(x)g(x)=(ax2+bx)(ax2+bx)=b2x2a2x4=x2(b2a2x2)=0f(x)g(x) = (ax^2+bx)(-ax^2+bx) = b^2x^2 - a^2x^4 = x^2(b^2-a^2x^2)=0. This has roots x=0x=0 (twice) and x=±b/ax = \pm b/a (if a0a \ne 0). So at least two real roots. In all cases, at least one of the discriminants is non-negative, guaranteeing at least two real roots.