Question
Question: If $f(x) = ax^2+bx+c$ and $g(x) = -ax^2+bx+c$, then $f(x) \cdot g(x) = 0$ has...
If f(x)=ax2+bx+c and g(x)=−ax2+bx+c, then f(x)⋅g(x)=0 has

Two real roots
at least two real roots
four real roots
at most two real roots
at least two real roots
Solution
The equation f(x)⋅g(x)=0 implies f(x)=0 or g(x)=0. The discriminant of f(x)=ax2+bx+c=0 is Δ1=b2−4ac. The discriminant of g(x)=−ax2+bx+c=0 is Δ2=b2−4(−a)(c)=b2+4ac. For real roots, we need Δ1≥0 or Δ2≥0. If ac>0, then b2+4ac>b2≥0, so Δ2>0. If ac<0, then b2−4ac>b2≥0, so Δ1>0. If ac=0, then either a=0 or c=0. If a=0, f(x)=bx+c and g(x)=bx+c, so f(x)g(x)=(bx+c)2=0 has one root if b=0, or no roots if b=0,c=0. If c=0, f(x)=ax2+bx and g(x)=−ax2+bx. f(x)g(x)=(ax2+bx)(−ax2+bx)=b2x2−a2x4=x2(b2−a2x2)=0. This has roots x=0 (twice) and x=±b/a (if a=0). So at least two real roots. In all cases, at least one of the discriminants is non-negative, guaranteeing at least two real roots.
