Solveeit Logo

Question

Question: We would like to increase the length of a 15 cm long copper rod of cross-section 4 mm² by 1 mm. The ...

We would like to increase the length of a 15 cm long copper rod of cross-section 4 mm² by 1 mm. The energy absorbed by the rod if it is heated is E₁. The energy absorbed by the rod if it is stretched slowly is E₂. The ratio of E₁ and E₂ is α\alpha. The value of α100\frac{\alpha}{100} is. [Various parameters of Copper are : Density = 9 × 10³ kg/m³, Thermal coefficient of linear expansion = 16 × 10⁻⁶ K⁻¹, Young's modulus = 135 × 10⁹ Pa, specific heat = 400 J/kg-K] :-

Answer

5

Explanation

Solution

Solution:

  1. Heating:
    The temperature rise needed for a linear expansion ΔL\Delta L is given by

    ΔT=ΔLLαth.\Delta T = \frac{\Delta L}{L \alpha_{\text{th}}}.

    The mass of the rod is

    m=ρAL.m = \rho \, A \, L.

    Thus, the energy absorbed by heating is

    E1=mcΔT=ρALc(ΔLLαth)=ρAcΔLαth.E_1 = m c \Delta T = \rho A L c \left(\frac{\Delta L}{L \alpha_{\text{th}}}\right) = \frac{\rho A c \,\Delta L}{\alpha_{\text{th}}}.
  2. Stretching:
    The elastic energy stored when a rod is stretched by ΔL\Delta L is

    E2=12YAΔL2L.E_2 = \frac{1}{2}Y A \frac{\Delta L^2}{L}.
  3. Ratio:
    The ratio is

    α=E1E2=ρAcΔLαth12YAΔL2L=2ρcLYαthΔL.\alpha =\frac{E_1}{E_2} =\frac{\frac{\rho A c \,\Delta L}{\alpha_{\text{th}}}}{\frac{1}{2}Y A\frac{\Delta L^2}{L}} = \frac{2\rho c L}{Y \alpha_{\text{th}}\, \Delta L}.
  4. Substitute given values:

    ρ=9×103kg/m3,c=400J/kg-K,L=15cm=0.15m,\rho = 9\times10^3\,\text{kg/m}^3,\quad c = 400\,\text{J/kg-K},\quad L=15\,\text{cm}=0.15\,\text{m}, ΔL=1mm=0.001m,αth=16×106K1,Y=135×109Pa.\Delta L = 1\,\text{mm}=0.001\,\text{m},\quad \alpha_{\text{th}} = 16\times10^{-6}\,\text{K}^{-1},\quad Y=135\times10^9\,\text{Pa}.

    Now,

    α=2×9×103×400×0.15135×109×16×106×0.001.\alpha = \frac{2\times 9\times10^3 \times 400 \times 0.15}{135\times10^9 \times 16\times10^{-6} \times 0.001}.

    Calculating numerator:

    2×9×103=18×103,2\times9\times10^3 = 18\times10^{3}, 18×103×400=7.2×106,18\times10^3 \times 400 = 7.2\times10^6, 7.2×106×0.15=1.08×106.7.2\times10^6 \times 0.15 = 1.08\times10^6.

    Calculating denominator:

    135×109×16×106=2160×103=2.16×106,135\times10^9 \times 16\times10^{-6} = 2160\times10^3 = 2.16\times10^6, 2.16×106×0.001=2160.2.16\times10^6 \times 0.001 = 2160.

    Thus,

    α=1.08×1062160=500.\alpha = \frac{1.08\times10^6}{2160} = 500.

    The required value is

    α100=500100=5.\frac{\alpha}{100}=\frac{500}{100}=5.

Core Explanation:

  • For heating, energy E₁ = (ρAc ΔL) / (αₜₕ).

  • For stretching, energy E₂ = (1/2)YA(ΔL²/L).

  • Ratio α = (2ρcL)/(YαₜₕΔL).

  • Substitute values to get α = 500; hence, (α/100) = 5.