Solveeit Logo

Question

Physics Question on Photoelectric Effect

We wish to see inside an atom. Assuming the atom to have a diameter of 100pm100\, pm, this means that one must be able to resolve a width of say 10pm10\, pm. If an electron microscope is used, the minimum electron energy required is about:

A

15 keV

B

1.5 keV

C

150 keV

D

1.5 MeV

Answer

15 keV

Explanation

Solution

The wavelength of light used in electron microscope is nearly equal to the resolving power of electron microscope. The de-Broglie wavelength is
λ=hp=hmv\lambda=\frac{h}{p}=\frac{h}{m v}
v=hmλ\Rightarrow v=\frac{h}{m \lambda} \ldots(i)
Here : λ=10pm=1011m\lambda=10\, pm =10^{-11} m
m=9.1×1031kgm=9.1 \times 10^{-31} \,kg
and h=6.6×1034Jsh=6.6 \times 10^{-34} \,Js
So, from e (i), the speed of required electron.
v=6.6×10349.1×1031×1011v=\frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \times 10^{-11}}
=7.25×107m/s=7.25 \times 10^{7} m / s
The energy of electron is =12mv2=\frac{1}{2} m v^{2}
=12×9.1×1031×(7.25×107)2×1eV1.6×1019]\left.=\frac{1}{2} \times 9.1 \times 10^{-31} \times\left(7.25 \times 10^{7}\right)^{2} \times \frac{1\, eV }{1.6 \times 10^{-19}}\right]
=15keV=15 \,keV