Solveeit Logo

Question

Question: We use the derivative according to the given problem .The derivative of function \(f(x) = \dfrac{{{x...

We use the derivative according to the given problem .The derivative of function f(x)=x2[1sin2x]f(x) = \dfrac{{{x^2}}}{{[1 - si{n^2}x]}} is
1. Even functionEven{\text{ }}function
2. Odd functionOdd{\text{ }}function
3. Not defineNot{\text{ }}define
4. Increasing FunctionIncreasing{\text{ }}Function

Explanation

Solution

We have to derivative the function f(x)=x2[1sin2x]f(x) = \dfrac{{{x^2}}}{{[1 - si{n^2}x]}} and state the type of function formed after differentiating the function f(x)f\left( x \right) . We solve this by firstly differentiating the function f(x)f\left( x \right) with respect to using chain rule and various basic derivative formulas of trigonometric functions and derivatives of xn{x^n} . Then in the function f(x)f'\left( x \right) we replace   x\;x by (x)\left( { - x} \right) and then state the type of the function .

Complete step-by-step solution:
Given : f(x)=x2[1sin2x]f(x) = \dfrac{{{x^2}}}{{[1 - si{n^2}x]}}
Let f(x) = yf\left( x \right){\text{ }} = {\text{ }}y
So ,
y=f(x)=x2[1sin2x]y = f(x) = \dfrac{{{x^2}}}{{[1 - si{n^2}x]}}
We know that , sin2x+cos2x=1si{n^2}x + co{s^2}x = 1
Using this formula , we get
cos2x=1sin2xco{s^2}x = 1 - si{n^2}x
Putting this in yy , we get
y=x2cos2xy = \dfrac{{{x^2}}}{{co{s^2}x}}
Also we know that cos x =1 sec xcos{\text{ }}x{\text{ }} = \dfrac{1}{{{\text{ }}sec{\text{ }}x}}
Hence , the function becomes
y=x2×sec2xy = {x^2} \times se{c^2}x
Now we have to derivative of yy with respect to
Using product rule of differentiation , ( derivative of xn=n×x(n1){x^n} = n \times {x^{(n - 1)}} ) and ( derivative of sec x = sec x × tan xsec{\text{ }}x{\text{ }} = {\text{ }}sec{\text{ }}x{\text{ }} \times {\text{ }}tan{\text{ }}x ) , we get
dydx=2xsec2x+2secx×tanx×x2\dfrac{{dy}}{{dx}} = 2xse{c^2}x + 2\sec x \times \tan x \times {x^2}
Taking elements common , we get
dydx= 2x sec x [ sec x + tan x × x ]\dfrac{{dy}}{{dx}} = {\text{ }}2x{\text{ }}sec{\text{ }}x{\text{ }}\left[ {{\text{ }}sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }} \times {\text{ }}x{\text{ }}} \right]
The derivative of function f(x) = f(x) =dydxf\left( x \right){\text{ }} = {\text{ }}f'\left( x \right){\text{ }} = \dfrac{{dy}}{{dx}}
So ,
f(x) = 2x sec x [ sec x + tan x × x ]f'\left( x \right){\text{ }} = {\text{ }}2x{\text{ }}sec{\text{ }}x{\text{ }}\left[ {{\text{ }}sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }} \times {\text{ }}x{\text{ }}} \right]
Now , we will replace   x\;x by x - x in f(x)f'\left( x \right) to check whether the function is an even or an odd function
Replacing xx by x - x , we get
f(x) = 2 × (x ) sec (x) × [ sec (x) + tan (x) × (x) ]f'\left( { - x} \right){\text{ }} = {\text{ }}2{\text{ }} \times {\text{ }}\left( { - x{\text{ }}} \right){\text{ }}sec{\text{ }}\left( { - x} \right){\text{ }} \times {\text{ }}\left[ {{\text{ }}sec{\text{ }}\left( { - x} \right){\text{ }} + {\text{ }}tan{\text{ }}\left( { - x} \right){\text{ }} \times {\text{ }}\left( { - x} \right){\text{ }}} \right]
We also know that , tan (x) =  tan xtan{\text{ }}\left( { - x} \right){\text{ }} = {\text{ }} - {\text{ }}tan{\text{ }}x and sec (x) = sec xsec{\text{ }}\left( { - x} \right){\text{ }} = {\text{ }}sec{\text{ }}x
Using this , we get
f(x) = 2 × (x ) sec x × [ sec x + ( tan x ) × ( x) ]f'\left( { - x} \right){\text{ }} = {\text{ }}2{\text{ }} \times {\text{ }}\left( { - x{\text{ }}} \right){\text{ }}sec{\text{ }}x{\text{ }} \times {\text{ }}\left[ {{\text{ }}sec{\text{ }}x{\text{ }} + {\text{ }}\left( { - {\text{ }}tan{\text{ }}x{\text{ }}} \right){\text{ }} \times {\text{ }}\left( { - {\text{ }}x} \right){\text{ }}} \right]
Also we know that product of two negative terms gives a positive result
f(x) =  2 x × sec x [ sec x + tan x × x ]f'\left( { - x} \right){\text{ }} = {\text{ }} - {\text{ }}2{\text{ }}x{\text{ }} \times {\text{ }}sec{\text{ }}x{\text{ }}\left[ {{\text{ }}sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }} \times {\text{ }}x{\text{ }}} \right]
Now , we can conclude that
f(x) =  f(x)f'\left( { - x} \right){\text{ }} = {\text{ }} - {\text{ }}f\left( x \right) we also know that if we get this relation then the function is an odd function .
Hence , the derivative of function f(x)f\left( x \right) is an odd function
Thus , the correct answer is (2)\left( 2 \right).

Note: If after replacing   x\;x by x - x in f(x)f'\left( x \right) and we would get the result that f(x) = f(x)f\left( { - x} \right){\text{ }} = {\text{ }}f\left( x \right) , then we would have stated that function is an even function .
We differentiated yy with respect to to find dydx\dfrac{{dy}}{{dx}} . We know the differentiation of trigonometric function :
d[cos x]dx= sin x\dfrac{{d\left[ {cos{\text{ }}x} \right]}}{{dx}} = {\text{ }} - sin{\text{ }}x
d[sin x]dx = cos x\dfrac{{d\left[ {sin{\text{ }}x} \right]}}{{dx}}{\text{ }} = {\text{ }}cos{\text{ }}x
d[xn]=nx(n1)d[{x^n}] = n{x^{(n - 1)}}
d[tanx]=sec2xd[\tan x] = se{c^2}x
Derivative of product of two function is given by the following product rule :
d[f(x) × g(x)]dx = d[f(x)]dx× g + f ×d[g(x)]dx\dfrac{{d\left[ {f\left( x \right){\text{ }} \times {\text{ }}g\left( x \right)} \right]}}{{dx}}{\text{ }} = {\text{ }}\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} \times {\text{ }}g{\text{ }} + {\text{ }}f{\text{ }} \times \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}