Solveeit Logo

Question

Question: we have an expression as \({\log _{12}}27 = a\). So, find the value of \({\log _6}16\) in ‘\(a\)’ fo...

we have an expression as log1227=a{\log _{12}}27 = a. So, find the value of log616{\log _6}16 in ‘aa’ form?

Explanation

Solution

We will use the logarithmic change of base formula for log1227=a{\log _{12}}27 = a and log616{\log _6}16 . Using change of base formula for log1227=a{\log _{12}}27 = a , we will find the log of a number with changed base in terms of ‘aa’ and substitute in log616{\log _6}16 to get the final answer.

Complete step-by-step solution:
Given that: log1227=a{\log _{12}}27 = a
The change of base formula states that,
logqp=logrplogrq{\log _q}p = \dfrac{{{{\log }_r}p}}{{{{\log }_r}q}}
By using this change of base formula, we will modify the equation log1227=a{\log _{12}}27 = a to base 1010 .
log1227=a{\log _{12}}27 = a
log1227=log1027log1012=a{\log _{12}}27 = \dfrac{{{{\log }_{10}}27}}{{{{\log }_{10}}12}} = a
We can write 2727 as 3×3×33 \times 3 \times 3 and 1212 as 2×2×32 \times 2 \times 3 ,
log1227=log103×3×3log102×2×3=a\therefore {\log _{12}}27 = \dfrac{{{{\log }_{10}}3 \times 3 \times 3}}{{{{\log }_{10}}2 \times 2 \times 3}} = a
Substituting 3×3×3=333 \times 3 \times 3 = {3^3} and 2×2×3=22×32 \times 2 \times 3 = {2^2} \times 3in the above equation,
log1227=log1033log10(22×3)=a\therefore {\log _{12}}27 = \dfrac{{{{\log }_{10}}{3^3}}}{{{{\log }_{10}}({2^2} \times 3)}} = a
By using the basic logarithmic formula which states that,
logn(a×b)=logna+lognb{\log _n}(a \times b) = {\log _n}a + {\log _n}b
We can write log1227=log1033log10(22×3)=a{\log _{12}}27 = \dfrac{{{{\log }_{10}}{3^3}}}{{{{\log }_{10}}({2^2} \times 3)}} = a as,
log1227=log1033log1022+log103=a{\log _{12}}27 = \dfrac{{{{\log }_{10}}{3^3}}}{{{{\log }_{10}}{2^2} + {{\log }_{10}}3}} = a
By using the basic logarithmic formula which states that,
logban=nlogba{\log _b}{a^n} = n{\log _b}a
We write log1227=log1033log1022+log103=a{\log _{12}}27 = \dfrac{{{{\log }_{10}}{3^3}}}{{{{\log }_{10}}{2^2} + {{\log }_{10}}3}} = a as,
log1227=3log1032log102+log103=a\Rightarrow {\log _{12}}27 = \dfrac{{3{{\log }_{10}}3}}{{2{{\log }_{10}}2 + {{\log }_{10}}3}} = a
3log1032log102+log103=a\Rightarrow \dfrac{{3{{\log }_{10}}3}}{{2{{\log }_{10}}2 + {{\log }_{10}}3}} = a
Rearranging the terms in the above equation as,
2log102+log1033log103=1a\dfrac{{2{{\log }_{10}}2 + {{\log }_{10}}3}}{{3{{\log }_{10}}3}} = \dfrac{1}{a}
Splitting the addition term in the above equation,
2log1023log103+log1033log103=1a\dfrac{{2{{\log }_{10}}2}}{{3{{\log }_{10}}3}} + \dfrac{{{{\log }_{10}}3}}{{3{{\log }_{10}}3}} = \dfrac{1}{a}
Solving this equation, we get,
2log1023log103+13=1a\dfrac{{2{{\log }_{10}}2}}{{3{{\log }_{10}}3}} + \dfrac{1}{3} = \dfrac{1}{a}
Taking the 13\dfrac{1}{3} term to the right-hand side,
2log1023log103=1a13\dfrac{{2{{\log }_{10}}2}}{{3{{\log }_{10}}3}} = \dfrac{1}{a} - \dfrac{1}{3}
We can write this equation as ,
23×log102log103=3aa×3\dfrac{2}{3} \times \dfrac{{{{\log }_{10}}2}}{{{{\log }_{10}}3}} = \dfrac{{3 - a}}{{a \times 3}}
Taking the 23\dfrac{2}{3} term to the right-hand side,
log102log103=32×3aa×3\dfrac{{{{\log }_{10}}2}}{{{{\log }_{10}}3}} = \dfrac{3}{2} \times \dfrac{{3 - a}}{{a \times 3}}
log102log103=3(3a)2×a×3\Rightarrow \dfrac{{{{\log }_{10}}2}}{{{{\log }_{10}}3}} = \dfrac{{3(3 - a)}}{{2 \times a \times 3}}
log102log103=(3a)2a\Rightarrow \dfrac{{{{\log }_{10}}2}}{{{{\log }_{10}}3}} = \dfrac{{(3 - a)}}{{2a}}
2a(3a)log102=log103\Rightarrow \dfrac{{2a}}{{(3 - a)}}{\log _{10}}2 = {\log _{10}}3 ….. (1)
Now consider,
log616{\log _6}16
Applying the same change of base formula,
logqp=logrplogrq{\log _q}p = \dfrac{{{{\log }_r}p}}{{{{\log }_r}q}}
log616=log1016log106{\log _6}16 = \dfrac{{{{\log }_{10}}16}}{{{{\log }_{10}}6}}
We can write 16=2×2×2×216 = 2 \times 2 \times 2 \times 2 and 6=2×36 = 2 \times 3 ,
log616=log102×2×2×2log102×3{\log _6}16 = \dfrac{{{{\log }_{10}}2 \times 2 \times 2 \times 2}}{{{{\log }_{10}}2 \times 3}}
Substituting 2×2×2×2=242 \times 2 \times 2 \times 2 = {2^4},
log616=log1024log102×3{\log _6}16 = \dfrac{{{{\log }_{10}}{2^4}}}{{{{\log }_{10}}2 \times 3}}
By using the basic logarithmic formula which states that,
logn(a×b)=logna+lognb{\log _n}(a \times b) = {\log _n}a + {\log _n}b
We can write log616=log1024log102×3{\log _6}16 = \dfrac{{{{\log }_{10}}{2^4}}}{{{{\log }_{10}}2 \times 3}} as,
log616=log1024log102+log103{\log _6}16 = \dfrac{{{{\log }_{10}}{2^4}}}{{{{\log }_{10}}2 + {{\log }_{10}}3}}
By using the basic logarithmic formula which states that,
logban=nlogba{\log _b}{a^n} = n{\log _b}a
log616=4log102log102+log103{\log _6}16 = \dfrac{{4{{\log }_{10}}2}}{{{{\log }_{10}}2 + {{\log }_{10}}3}}
Substituting the value of log103{\log _{10}}3 from equation (1),
log616=4log102log102+2a(3a)log102{\log _6}16 = \dfrac{{4{{\log }_{10}}2}}{{{{\log }_{10}}2 + \dfrac{{2a}}{{(3 - a)}}{{\log }_{10}}2}}
Taking log102{\log _{10}}2 common from the denominator,
log616=4log102log102(1+2a(3a)){\log _6}16 = \dfrac{{4{{\log }_{10}}2}}{{{{\log }_{10}}2\left( {1 + \dfrac{{2a}}{{(3 - a)}}} \right)}}
Cancelling out log102{\log _{10}}2 from numerator and denominator we get,
log616=4(1+2a(3a)){\log _6}16 = \dfrac{4}{{\left( {1 + \dfrac{{2a}}{{(3 - a)}}} \right)}}
Simplifying this equation further,
log616=4(3a+2a(3a)){\log _6}16 = \dfrac{4}{{\left( {\dfrac{{3 - a + 2a}}{{(3 - a)}}} \right)}}
log616=4(3a)3a+2a\Rightarrow {\log _6}16 = \dfrac{{4(3 - a)}}{{3 - a + 2a}}
log616=4(3a)(3+a)\Rightarrow {\log _6}16 = \dfrac{{4(3 - a)}}{{(3 + a)}}
The value of log616{\log _6}16 in ‘aa’ form is log616=4(3a)(3+a){\log _6}16 = \dfrac{{4(3 - a)}}{{(3 + a)}} .

Note: The change of base method allows rewriting the logarithm in phrases of any other base log. change of base formulation is used within the evaluation of log and has every other base than 1010.