Solveeit Logo

Question

Question: We assign certain score to a function depending on type of function it is. If $f(x)$ is one-one then...

We assign certain score to a function depending on type of function it is. If f(x)f(x) is one-one then score given to f(x)f(x) is 1, if many-one then score given to f(x)f(x) is 2. Similarly, if f(x)f(x) is onto, into, odd, even, neither even nor odd, periodic and aperiodic then score given to f(x)f(x) is 3, 4, 5, 6, 7, 8 and 9 respectively. Then net score of f:RRf: R \rightarrow R, f(x)=(2sinx+1)22sinxf(x)=\frac{(2^{\sin x}+1)^2}{2^{\sin x}} is __.

Answer

20

Explanation

Solution

The given function is f:RRf: R \rightarrow R, f(x)=(2sinx+1)22sinxf(x)=\frac{(2^{\sin x}+1)^2}{2^{\sin x}}.

First, simplify the expression for f(x)f(x): f(x)=(2sinx)2+22sinx1+122sinxf(x) = \frac{(2^{\sin x})^2 + 2 \cdot 2^{\sin x} \cdot 1 + 1^2}{2^{\sin x}} f(x)=22sinx+22sinx+12sinxf(x) = \frac{2^{2\sin x} + 2 \cdot 2^{\sin x} + 1}{2^{\sin x}} f(x)=22sinx2sinx+22sinx2sinx+12sinxf(x) = \frac{2^{2\sin x}}{2^{\sin x}} + \frac{2 \cdot 2^{\sin x}}{2^{\sin x}} + \frac{1}{2^{\sin x}} f(x)=2sinx+2+2sinxf(x) = 2^{\sin x} + 2 + 2^{-\sin x} f(x)=2sinx+2sinx+2f(x) = 2^{\sin x} + 2^{- \sin x} + 2

Now, let's analyze the properties of f(x)f(x):

1. One-one or Many-one:

A function is one-one if distinct inputs map to distinct outputs. It is many-one if at least two distinct inputs map to the same output. We know that sinx\sin x is a periodic function, meaning sinx\sin x takes the same value for multiple xx values (e.g., sin0=0\sin 0 = 0 and sinπ=0\sin \pi = 0). Let's check f(0)f(0) and f(π)f(\pi): f(0)=2sin0+2sin0+2=20+20+2=1+1+2=4f(0) = 2^{\sin 0} + 2^{-\sin 0} + 2 = 2^0 + 2^0 + 2 = 1+1+2 = 4. f(π)=2sinπ+2sinπ+2=20+20+2=1+1+2=4f(\pi) = 2^{\sin \pi} + 2^{-\sin \pi} + 2 = 2^0 + 2^0 + 2 = 1+1+2 = 4. Since 0π0 \neq \pi but f(0)=f(π)f(0) = f(\pi), the function is many-one. Score for many-one: 2.

2. Onto or Into:

A function f:ABf: A \rightarrow B is onto if its range is equal to its codomain (BB). It is into if its range is a proper subset of its codomain (BB). The codomain is given as RR. Let's find the range of f(x)f(x). Let u=sinxu = \sin x. Since xRx \in R, u[1,1]u \in [-1, 1]. So, f(x)=g(u)=2u+2u+2f(x) = g(u) = 2^u + 2^{-u} + 2. Consider the function h(u)=2u+2uh(u) = 2^u + 2^{-u}. To find its range for u[1,1]u \in [-1, 1], we can analyze its derivative or check values at critical points and endpoints. h(u)=2uln22uln2=ln2(2u2u)h'(u) = 2^u \ln 2 - 2^{-u} \ln 2 = \ln 2 (2^u - 2^{-u}). Setting h(u)=0    2u=2u    u=u    2u=0    u=0h'(u) = 0 \implies 2^u = 2^{-u} \implies u = -u \implies 2u = 0 \implies u=0. At u=0u=0, h(0)=20+20=1+1=2h(0) = 2^0 + 2^0 = 1+1=2. This is a minimum value. At the endpoints of the interval [1,1][-1, 1]: For u=1u=1, h(1)=21+21=2+1/2=5/2h(1) = 2^1 + 2^{-1} = 2 + 1/2 = 5/2. For u=1u=-1, h(1)=21+2(1)=1/2+2=5/2h(-1) = 2^{-1} + 2^{-(-1)} = 1/2 + 2 = 5/2. So, the range of h(u)h(u) for u[1,1]u \in [-1, 1] is [2,5/2][2, 5/2]. Therefore, the range of f(x)=h(sinx)+2f(x) = h(\sin x) + 2 is [2+2,5/2+2]=[4,9/2][2+2, 5/2+2] = [4, 9/2]. Since the range [4,9/2][4, 9/2] is a proper subset of the codomain RR, the function is into. Score for into: 4.

3. Odd, Even, or Neither even nor odd:

A function f(x)f(x) is even if f(x)=f(x)f(-x) = f(x). It is odd if f(x)=f(x)f(-x) = -f(x). Let's check f(x)f(-x): f(x)=2sin(x)+2sin(x)+2f(-x) = 2^{\sin(-x)} + 2^{-\sin(-x)} + 2 Since sin(x)=sinx\sin(-x) = -\sin x: f(x)=2sinx+2(sinx)+2f(-x) = 2^{-\sin x} + 2^{-(-\sin x)} + 2 f(x)=2sinx+2sinx+2f(-x) = 2^{-\sin x} + 2^{\sin x} + 2 This is identical to f(x)f(x). So, f(x)=f(x)f(-x) = f(x). The function is even. Score for even: 6.

4. Periodic or Aperiodic:

A function f(x)f(x) is periodic if there exists a positive real number TT such that f(x+T)=f(x)f(x+T) = f(x) for all xx in the domain. We know that sinx\sin x is a periodic function with period 2π2\pi. Let's check f(x+2π)f(x+2\pi): f(x+2π)=2sin(x+2π)+2sin(x+2π)+2f(x+2\pi) = 2^{\sin(x+2\pi)} + 2^{-\sin(x+2\pi)} + 2 Since sin(x+2π)=sinx\sin(x+2\pi) = \sin x: f(x+2π)=2sinx+2sinx+2=f(x)f(x+2\pi) = 2^{\sin x} + 2^{-\sin x} + 2 = f(x). So, the function is periodic with period 2π2\pi. Score for periodic: 8.

Net Score Calculation:

Sum the scores for each property: Net Score = (Score for Many-one) + (Score for Into) + (Score for Even) + (Score for Periodic) Net Score = 2+4+6+8=202 + 4 + 6 + 8 = 20.