Question
Question: We are given a trigonometric function as ,\(y={{\left( \cot x \right)}^{\sin x}}+{{\left( \tan x \ri...
We are given a trigonometric function as ,y=(cotx)sinx+(tanx)cosx. Then find dxdy.
A. sinx(cotx)sinx−1(−cosec2x)+(cotx)sinx(logcotx)cosx+cosx(tanx)cosx−1sec2x+(tanx)cosx(logtanx)(−sinx)
B. sinx(cotx)sinx−1(−cosec2x)+cosx(tanx)cosx−1sec2x
C. sinx(cotx)sinx−1(−sec2x)+(cotx)sinx(logcotx)cosx+cosx(tanx)cosx−1cosec2x+(tanx)cosx(logtanx)(sinx)
D. none of these
Solution
To find the differentiation of y we first separate the functions in y. We find their differentiations separately and add them at the end. We use logarithmic formulas to apply the chain rule on those functions. At the end we perform some trigonometric relations to match with the given options.
Complete answer:
Here we have been given y as a sum of two different functions of x. We assume those functions and differentiate separately.
So, y=(cotx)sinx+(tanx)cosx=f(x)+g(x) where f(x)=(cotx)sinx,g(x)=(tanx)cosx.
Differentiating both sides, we get dxdy=f′(x)+g′(x).
We have to differentiate f(x)=(cotx)sinx and g(x)=(tanx)cosx separately.
We apply logarithm to both cases and then differentiate. We have logab=bloga.
For f(x)=(cotx)sinx, we get log[f(x)]=log[(cotx)sinx]=sinxlog(cotx).
We differentiate to find f′(x).
log[f(x)]=sinxlog(cotx)⇒f(x)f′(x)=sinx.dxd[log(cotx)]+dxd(sinx).log(cotx)⇒f(x)f′(x)=sinx.cotx(−cosec2x)+cosx.log(cotx)⇒f′(x)=f(x)[−secx+cosx.log(cotx)]
For g(x)=(tanx)cosx, we get log[g(x)]=log[(tanx)cosx]=cosxlog(tanx).
We differentiate to find g′(x).
log[g(x)]=cosxlog(tanx)⇒g(x)g′(x)=cosx.dxd[log(tanx)]+dxd(cosx).log(tanx)⇒g(x)g′(x)=cosx.tanx(sec2x)+(−sinx).log(tanx)⇒g′(x)=g(x)[cosecx−sinx.log(tanx)]
Now we put the differentiation values in dxdy=f′(x)+g′(x).
dxdy=f′(x)+g′(x)⇒dxdy=f(x)[−secx+cosx.log(cotx)]+g(x)[cosecx−sinx.log(tanx)]
Now we put the values of the functions in the equation
dxdy=(cotx)sinx[−secx+cosx.log(cotx)]+(tanx)cosx[cosecx−sinx.log(tanx)]
To match it with the given options we solve the equation and get