Solveeit Logo

Question

Question: We are given a trigonometric expression, \(2-{{\cos }^{2}}\theta =3\sin \theta \cos \theta ,\sin \th...

We are given a trigonometric expression, 2cos2θ=3sinθcosθ,sinθcosθ2-{{\cos }^{2}}\theta =3\sin \theta \cos \theta ,\sin \theta \ne \cos \theta ,find the value of cotθ\cot \theta .
a. 12\dfrac{1}{2}
b. 00
c. 1-1
d. 22

Explanation

Solution

Hint: In the question we can see cos2θ{{\cos }^{2}}\theta and cotθ\cot \theta which tells us that we can use trigonometric ratios and identity to solve the equation. Moreover, we have two terms containing cosθ\cos \theta in which one is of second degree (cos2θ)\left( {{\cos }^{2}}\theta \right) other is of first degree \left\\{ 2\sin \theta \left( \cos \theta \right) \right\\}, so the quadratic equation can also be applicable.

Complete step-by-step answer:

We have been given the equation as 2cos2θ=3sinθcosθ2-{{\cos }^{2}}\theta =3\sin \theta \cos \theta and we need to find the value of cotθ\cot \theta :
2cos2θ=3sinθcosθ\Rightarrow 2-{{\cos }^{2}}\theta =3\sin \theta \cos \theta

Breaking 22 into 1+11+1 , we get:
1+1cos2θ=3sinθcosθ\Rightarrow 1+1-{{\cos }^{2}}\theta =3\sin \theta cos\theta
1+(1cos2θ)=3sinθcosθ.........(i)\Rightarrow 1+(1-{{\cos }^{2}}\theta )=3\sin \theta \cos \theta .........(i)

Using the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1, we can rewrite the equation (i) as,
(sin2θ+cos2θ)+(sin2θ)=3sinθcosθ({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )+({{\sin }^{2}}\theta )=3\sin \theta \cos \theta
2sin2θ+cos2θ=3sinθcosθ\Rightarrow 2{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =3\sin \theta \cos \theta
2sin2θ3sinθcosθ+cos2θ=0.............(ii)\Rightarrow 2{{\sin }^{2}}\theta -3\sin \theta \cos \theta +{{\cos }^{2}}\theta =0.............(ii)
Now for the simplification purpose let’s put sinθ=x\sin \theta =x and rewrite the equation (ii) as,
(2)x2(3cosθ)x+(cos2θ)=0..........(iii)\Rightarrow (2){{x}^{2}}-(3\cos \theta )x+({{\cos }^{2}}\theta )=0..........(iii)

This equation is of quadratic form ax2+bx+c=0a{{x}^{2}}+bx+c=0 where a=2,b=3cosθ,c=cos2θa=2,b=-3\cos \theta ,c={{\cos }^{2}}\theta .

Factoring the equation (iii), we get,
2x(xcosθ)cosθ(xcosθ)=02x(x-\cos \theta )-\cos \theta (x-\cos \theta )=0
(2xcosθ)(xcosθ)=0.............(iv)\Rightarrow (2x-\cos \theta )(x-\cos \theta )=0.............(iv)

But x=sinθx=\sin \theta , so the above equation (iv) becomes:
(2sinθcosθ)(sinθcosθ)=0............(v)(2\sin \theta -\cos \theta )(\sin \theta -\cos \theta )=0............(v)

If the product of the two numbers is zero then any one number out of two numbers must be zero.

So, from the equation (v) we will have two solutions,
If 2sinθcosθ=02\sin \theta -\cos \theta =0
2sinθ=cosθ\Rightarrow 2\sin \theta =\cos \theta

On cross – multiplication, we get
cosθsinθ=2\Rightarrow \dfrac{\cos \theta }{\sin \theta }=2

Now we know from trigonometric equation cotx=sinxcosx\cot x=\dfrac{\sin x}{\cos x} , we get,
cotθ=2.......................(k)\Rightarrow \cot \theta =2.......................(k)
And if, sinθcosθ=0\sin \theta -\cos \theta =0
sinθ=cosθ................(l)\Rightarrow \sin \theta =\cos \theta ................(l)

But as per the condition specified in the question that sinθcosθ\sin \theta \ne \cos \theta so equation (l) becomes invalid and equation (k) is the only solution of the given problem.

Hence, the final answer is option (d).

Note: You may get stuck in the 2cos2θ=3sinθcosθ2-{{\cos }^{2}}\theta =3\sin \theta \cos \theta solving for once if you will try to convert right hand side expression according to sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta formula because these terms seems something similar but solving this way will be very lengthy and time consuming.