Solveeit Logo

Question

Question: Wavenumber for a radiation having 5800 Å wavelength is $x \times 10^4$ cm$^{-1}$. The value of $x$ i...

Wavenumber for a radiation having 5800 Å wavelength is x×104x \times 10^4 cm1^{-1}. The value of xx is _______.

Answer

1.72

Explanation

Solution

The wavenumber (ν~\tilde{\nu}) is the reciprocal of the wavelength (λ\lambda). The formula is: ν~=1λ\tilde{\nu} = \frac{1}{\lambda} The given wavelength is λ=5800A˚\lambda = 5800 \, \text{\AA}.

We need to convert the wavelength to centimeters, as the wavenumber is given in cm1^{-1}. The conversion factor between Ångström (Å) and centimeter (cm) is: 1A˚=1010m1 \, \text{\AA} = 10^{-10} \, \text{m} 1cm=102m1 \, \text{cm} = 10^{-2} \, \text{m} So, 1A˚=1010102cm=108cm1 \, \text{\AA} = \frac{10^{-10}}{10^{-2}} \, \text{cm} = 10^{-8} \, \text{cm}.

Now, convert the given wavelength to centimeters: λ=5800A˚=5800×108cm\lambda = 5800 \, \text{\AA} = 5800 \times 10^{-8} \, \text{cm} λ=5.8×103×108cm=5.8×105cm\lambda = 5.8 \times 10^3 \times 10^{-8} \, \text{cm} = 5.8 \times 10^{-5} \, \text{cm}.

Now, calculate the wavenumber in cm1^{-1}: ν~=1λ=15.8×105cm=1055.8cm1\tilde{\nu} = \frac{1}{\lambda} = \frac{1}{5.8 \times 10^{-5} \, \text{cm}} = \frac{10^5}{5.8} \, \text{cm}^{-1} To calculate the value, we can write 1055.8\frac{10^5}{5.8} as 1000005.8=100000058\frac{100000}{5.8} = \frac{1000000}{58}. Performing the division: 1000000÷5817241.3793...1000000 \div 58 \approx 17241.3793... So, ν~17241.3793cm1\tilde{\nu} \approx 17241.3793 \, \text{cm}^{-1}.

The problem states that the wavenumber is x×104cm1x \times 10^4 \, \text{cm}^{-1}. We have ν~17241.3793cm1\tilde{\nu} \approx 17241.3793 \, \text{cm}^{-1}. We need to find the value of xx such that x×104=17241.3793x \times 10^4 = 17241.3793. x=17241.3793104=1.72413793...x = \frac{17241.3793}{10^4} = 1.72413793... Rounding to two decimal places gives 1.721.72.

Therefore, the value of xx is approximately 1.72.