Solveeit Logo

Question

Chemistry Question on Structure of atom

Wavenumber for a radiation having 5800A˚5800 \, \mathring{A} wavelength is x×10cm1x \times 10 \, \text{cm}^{-1}. The value of xx is _________

Answer

The wavenumber (ν~\tilde{\nu}) is given by:
ν~=1λ,\tilde{\nu} = \frac{1}{\lambda},
where λ\lambda is the wavelength in cm.
Step 1: Convert wavelength to cm
λ=5800A˚=5800×108cm.\lambda = 5800 \, \text{\AA} = 5800 \times 10^{-8} \, \text{cm}.
Step 2: Calculate wavenumber
ν~=15800×108=15.8×105=17241cm1.\tilde{\nu} = \frac{1}{5800 \times 10^{-8}} = \frac{1}{5.8 \times 10^{-5}} = 17241 \, \text{cm}^{-1}.
Step 3: Express as x×10cm1x \times 10 \, \text{cm}^{-1}
17241cm1=1724×10cm1.17241 \, \text{cm}^{-1} = 1724 \times 10 \, \text{cm}^{-1}.

Explanation

Solution

The wavenumber (ν~\tilde{\nu}) is given by:
ν~=1λ,\tilde{\nu} = \frac{1}{\lambda},
where λ\lambda is the wavelength in cm.
Step 1: Convert wavelength to cm
λ=5800A˚=5800×108cm.\lambda = 5800 \, \text{\AA} = 5800 \times 10^{-8} \, \text{cm}.
Step 2: Calculate wavenumber
ν~=15800×108=15.8×105=17241cm1.\tilde{\nu} = \frac{1}{5800 \times 10^{-8}} = \frac{1}{5.8 \times 10^{-5}} = 17241 \, \text{cm}^{-1}.
Step 3: Express as x×10cm1x \times 10 \, \text{cm}^{-1}
17241cm1=1724×10cm1.17241 \, \text{cm}^{-1} = 1724 \times 10 \, \text{cm}^{-1}.