Solveeit Logo

Question

Question: Wavelength of a \( 1{\text{ keV}} \) is \( {\text{1}}{\text{.24}} \times {\text{1}}{{\text{0}}^{ - 9...

Wavelength of a 1 keV1{\text{ keV}} is 1.24×109m{\text{1}}{\text{.24}} \times {\text{1}}{{\text{0}}^{ - 9}}m . What is the frequency of 1 MeV1{\text{ MeV}} photon?
(A) 1.24×1015Hz{\text{1}}{\text{.24}} \times {\text{1}}{{\text{0}}^{15}}Hz
(B) 1.24×1018Hz{\text{1}}{\text{.24}} \times {\text{1}}{{\text{0}}^{18}}Hz
(C) 2.4×1020Hz{\text{2}}{\text{.4}} \times {\text{1}}{{\text{0}}^{20}}Hz
(D) 2.4×1023Hz{\text{2}}{\text{.4}} \times {\text{1}}{{\text{0}}^{23}}Hz

Explanation

Solution

Hint : To solve this question we need to use the Planck’s energy equation for the energy of a photon. Also, we have to use the relation between the frequency and the wavelength of the radiation emitted by the photon.

Formula Used: The formula which are used to solve this question is given by
E=hν\Rightarrow E = h\nu , here EE is the energy of a photon of frequency ν\nu , and hh is Planck's constant.
λν=c\Rightarrow \lambda \nu = c , here ν\nu is the frequency of an electromagnetic radiation, λ\lambda is its wavelength, and cc is its speed.

Complete step by step answer
We know that the energy of a photon is given by
E=hν\Rightarrow E = h\nu ………………………(i)
Also, the frequency of the photon is related to its wavelength by
λν=c\Rightarrow \lambda \nu = c
ν=cλ\Rightarrow \nu = \dfrac{c}{\lambda } ………………………(ii)
Putting (ii) in (i) we get
E=hcλ\Rightarrow E = \dfrac{{hc}}{\lambda } ………………………(iii)
According to the question, we have E1=1 keV = 103 eV{E_1} = 1{\text{ keV = 1}}{{\text{0}}^3}{\text{ eV}} , and λ1=1.24×109m{\lambda _1} = {\text{1}}{\text{.24}} \times {\text{1}}{{\text{0}}^{ - 9}}m . Putting these in (iii) we get
103=hc1.24×109\Rightarrow {\text{1}}{{\text{0}}^3} = \dfrac{{hc}}{{{\text{1}}{\text{.24}} \times {\text{1}}{{\text{0}}^{ - 9}}}}
hc=1.24×106 eVm\Rightarrow hc = {\text{1}}{\text{.24}} \times {\text{1}}{{\text{0}}^{ - 6}}{\text{ eV}}m ………………………(iv)
Now we have E2=1 MeV = 106 eV{E_2} = 1{\text{ MeV = 1}}{{\text{0}}^6}{\text{ eV}} . Let λ2{\lambda _2} be the corresponding wavelength. Putting these in (iii) we get
106 eV=hcλ2\Rightarrow {\text{1}}{{\text{0}}^6}{\text{ eV}} = \dfrac{{hc}}{{{\lambda _2}}}
Substituting (iv) above we get
106 eV=1.24×106 eVmλ2\Rightarrow {\text{1}}{{\text{0}}^6}{\text{ eV}} = \dfrac{{{\text{1}}{\text{.24}} \times {\text{1}}{{\text{0}}^{ - 6}}{\text{ eV}}m}}{{{\lambda _2}}}
λ2=1.24×106 eVm106 eV\Rightarrow {\lambda _2} = \dfrac{{{\text{1}}{\text{.24}} \times {\text{1}}{{\text{0}}^{ - 6}}{\text{ eV}}m}}{{{\text{1}}{{\text{0}}^6}{\text{ eV}}}}
On solving we get
λ2=1.24×1012m\Rightarrow {\lambda _2} = {\text{1}}{\text{.24}} \times {\text{1}}{{\text{0}}^{ - 12}}m
From (ii) we have
ν=cλ\Rightarrow \nu = \dfrac{c}{\lambda } ………………………(v)
We know that c=3×108m/sc = 3 \times {10^8}m/s . Also substituting (v) above we get
ν=3×1081.24×1012\Rightarrow \nu = \dfrac{{3 \times {{10}^8}}}{{{\text{1}}{\text{.24}} \times {\text{1}}{{\text{0}}^{ - 12}}}}
On solving we get
ν=2.4×1020Hz\Rightarrow \nu = {\text{2}}{\text{.4}} \times {\text{1}}{{\text{0}}^{20}}Hz
Thus, the frequency of 1 MeV1{\text{ MeV}} photon is equal to 2.4×1020Hz{\text{2}}{\text{.4}} \times {\text{1}}{{\text{0}}^{20}}Hz .
Hence the correct answer is option C.

Note
The wavelength which is given in this question for the energy of 1 keV1{\text{ keV}} was just given to ease out the calculations. We could have solved this question without using this information. But that would have required much calculation because of conversions of the quantities into their corresponding SI units. So, we have used the given information.