Solveeit Logo

Question

Physics Question on Surface tension

Water rises to a height of 10 cm in a capillary tube and mercury falls to a depth of 3.5 cm in the same capillary tube. If the density of mercury is 13.6 g/cc and its angle of contact is 135135{}^\circ and density of water is 1 g/cc and its angle of contact is 00{}^\circ , then the ratio of surface tensions of the two liquids is: (cos 135=0.7)\left( \text{cos }135{}^\circ =0.7 \right)

A

1:14

B

5:34

C

1:05

D

5:25

Answer

5:34

Explanation

Solution

The rise or fall of liquid in the capillary tube is given by hρg=2Tcosθh=2Tcosθhρgh\rho g=2T\cos \theta \Rightarrow h=\frac{2T\cos \theta }{h\rho g} Hence, surface tension T=hrρg2cosθT=\frac{hr\rho g}{2\cos \theta } where r is radius of capillary Given: For watery h1=10cm,{{h}_{1}}=10\,cm, h2=3.5cm{{h}_{2}}=3.5\,cm (for mercury) Density of watery d1=1g/cc,{{d}_{1}}=1g/cc, Density of mercury d2=13.6g/cc{{d}_{2}}=13.6\,g/cc Angle of contact θ1=0{{\theta }_{1}}=0 (for water), angle of contact θ2=135o{{\theta }_{2}}={{135}^{o}} ?(for mercury) In first case T1=10×r×1×g2cosθ=10rg2cosθ=10rg2=5rg{{T}_{1}}=\frac{10\times r\times 1\times g}{2\cos \theta }=\frac{10rg}{2\cos \theta }=\frac{10rg}{2}=5rg ?(i) T2=3.5×r×13.6×g2cos135o=2×3.5×6.8rg{{T}_{2}}=\frac{3.5\times r\times 13.6\times g}{2\cos {{135}^{o}}}=\sqrt{2}\times 3.5\times 6.8\,rg ?(ii) Dividing E (ii) by E (i), we get T1T2=5rg2×3.5×6.8rg=5rg33.65rg=534\frac{{{T}_{1}}}{{{T}_{2}}}=\frac{5rg}{\sqrt{2}\times 3.5\times 6.8rg}=\frac{5rg}{33.65rg}=\frac{5}{34}