Solveeit Logo

Question

Question: Water rises to a height \[h\] on a capillary tube of cross-section area \[A\]. The height to which w...

Water rises to a height hh on a capillary tube of cross-section area AA. The height to which water rises in capillary tube of cross-section area 4A4A will be:
A. hh
B. h2\dfrac{h}{2}
C. h4\dfrac{h}{4}
D. 4h4h

Explanation

Solution

This problem is solved with the help of capillary rise equation:
h=2TCosθrXgh=\dfrac{2T\operatorname{Cos}\theta }{r\partial Xg}
r=Radiusofcapillaryr=Radius\,of\,capillary
h=Heightofcapillaryh=Height\,of\,capillary
T=SurfaceTensionT=Surface\,Tension
g=gravityg=gravity
θ=Angleofcontact\theta =Angle\,of\,contact

Complete step by step solution:
Use the capillary rise equation
h=2TCosθrXgh=\dfrac{2T\operatorname{Cos}\theta }{r\partial Xg} …..(1)
Therefore from the equation (1)
Height of capillary is inversely proportional to the radius of the capillary
h1rh\propto \dfrac{1}{r}
Area of the capillary
A=πr2A=\pi {{r}^{2}} …..(2)
Where r=Radiusofcapillaryr=Radius\,of\,capillary and A=AreaofcapillaryA=Area\,of\,capillary
Area of capillary is directly proportional to the radius of the capillary

& A\propto {{r}^{2}} \\\ & or \\\ & r\propto {{A}^{\dfrac{1}{2}}} \\\ \end{aligned}$$ Substitute the value of r in the equation (2) $$h\propto \dfrac{1}{{{A}^{\dfrac{1}{2}}}}$$ $${{h}_{1}}=Initial\,height\,of\,capillary$$ $${{h}_{2}}=Final\,height\,of\,capillary$$ Then, $${{A}_{2}}=4{{A}_{1}}$$ (given in question) $$\dfrac{{{h}_{1}}}{{{h}_{2}}}={{(\dfrac{{{A}_{1}}}{{{A}_{2}}})}^{\dfrac{1}{2}}}$$ $$\begin{aligned} & \dfrac{{{h}_{1}}}{{{h}_{2}}}=2 \\\ & {{h}_{1}}=2{{h}_{2}} \\\ & {{h}_{2}}=\dfrac{{{h}_{1}}}{2} \\\ \end{aligned}$$ **Thus, option B is correct.** **Note:** Students should focus to use the equation of the area of the capillary. Measurements of height should be taken very carefully. Students should have knowledge about the capillary.