Solveeit Logo

Question

Question: Water from a tap emerges vertically downwards with initial velocity \({{4 m/s}}\). The cross-section...

Water from a tap emerges vertically downwards with initial velocity 4m/s{{4 m/s}}. The cross-sectional area of the tap is A{{A}}. The flow is steady and pressure is constant through the water. The distance h{{h}}vertically below the tap, where the cross-sectional area will becomes (23)A\left( {\dfrac{{{2}}}{{{3}}}} \right){{A}} is: (g=10cm/s2)\left( {{{g = 10 cm/}}{{{s}}^{{2}}}} \right).

Explanation

Solution

First of all, write the equation of continuity i.e. and then substitute the given value in that equation. Then use Bernoulli’s theorem given as:ρ+ρgh1+12ρv12=ρ+ρgh2+12ρv22{{\rho + \rho g}}{{{h}}_{{1}}}{{ + }}\dfrac{{{1}}}{{{2}}}{{\rho }}{{{v}}_{{1}}}^{{2}}{{ = \rho + \rho g}}{{{h}}_2}{{ + }}\dfrac{{{1}}}{{{2}}}{{\rho }}{{{v}}_2}^{{2}}and then substitute the values in the formula and solve.

Complete step by step solution:
Equation of continuity

Let us consider a non-viscous, incompressible liquid which is flowing steadily through a pipe. Let A1{{{A}}_{{1}}} be the cross-section, v1{{{v}}_{{1}}} be the fluid velocity, ρ1{{{\rho }}_{{1}}} be the fluid density at point A{{A}}(left end of the pipe). And Let A2{{{A}}_2} be the cross-section, v2{{{v}}_2} be the fluid velocity, ρ2{{{\rho }}_2} be the fluid density at point B{{B}}(right end of the pipe).
The area of cross-sections are made such that.
Now, formula for mass is given by
And volume can be rewritten as A1>A2{{{A}}_{{1}}}{{ > }}{{{A}}_{{2}}} the product of area of cross section and length.
Thus, m=area of cross section×length×density{{m = \text{area of cross section} }} \times {{ length \times density}}
Therefore, mass of fluid flowing through section A in small time dt is given by
m1=a1v1dtρ1{{{m}}_{{1}}}{{ = }}{{{a}}_{{1}}}{{ }}{{{v}}_{{1}}}{{ dt }}{{{\rho }}_{{1}}}
Similarly, mass of fluid flowing through section B in small time dt is given by
m2=a2v2dtρ2{{{m}}_2}{{ = }}{{{a}}_2}{{ }}{{{v}}_2}{{ dt }}{{{\rho }}_2}
By conservation of mass,
m1=m2{{{m}}_{{1}}}{{ = }}{{{m}}_{{2}}}
a1v1dtρ1=a2v2dtρ2{{ }}{{{a}}_{{1}}}{{ }}{{{v}}_{{1}}}{{ dt }}{{{\rho }}_{{1}}} = {{ }}{{{a}}_2}{{ }}{{{v}}_2}{{ dt }}{{{\rho }}_2}
As the fluid is incompressible, so ρ1=ρ2{{{\rho }}_{{1}}}{{ = }}{{{\rho }}_{{2}}}
Hence a1v1=a2v2{{ }}{{{a}}_{{1}}}{{ }}{{{v}}_{{1}}} = {{ }}{{{a}}_2}{{ }}{{{v}}_2}
On substituting values in above formula, we get

v1=6m/s  \Rightarrow {{ }}{{{v}}_{{1}}}{{ = 6 m/s}} \\\

Now using Bernoulli’s theorem
ρ+ρgh1+12ρv12=ρ+ρgh2+12ρv22{{\rho + \rho g}}{{{h}}_{{1}}}{{ + }}\dfrac{{{1}}}{{{2}}}{{\rho }}{{{v}}_{{1}}}^{{2}}{{ = \rho + \rho g}}{{{h}}_2}{{ + }}\dfrac{{{1}}}{{{2}}}{{\rho }}{{{v}}_2}^{{2}}
On further simplification, we get
g(h1h2)=12(v22v12) g(h)=12(v22v12)  {{g(}}{{{h}}_{{1}}}{{ - }}{{{h}}_{{2}}}{{) = }}\dfrac{{{1}}}{{{2}}}{{(}}{{{v}}_{{2}}}^{{2}}{{ - }}{{{v}}_{{1}}}^{{2}}{{)}} \\\ \Rightarrow {{g(h) = }}\dfrac{{{1}}}{{{2}}}{{(}}{{{v}}_{{2}}}^{{2}}{{ - }}{{{v}}_{{1}}}^{{2}}{{)}} \\\
On substituting values, we get
g(h)=12(6242) 10×h=12(3616) h=1m  {{g(h) = }}\dfrac{{{1}}}{{{2}}}{{(}}{{{6}}^{{2}}}{{ - }}{{{4}}^{{2}}}{{)}} \\\ \Rightarrow {{10 \times h = }}\dfrac{{{1}}}{{{2}}}{{(36 - 16)}} \\\ \therefore {{h = 1 m}} \\\
Thus, the value of h is 1m{{1 m}}.

Note: Equation of continuity states that during streamlines flow of the non-viscous and incompressible fluid through pipes of varying cross-section, the product of area of cross-section and the normal fluid velocity remains constant throughout the flow.