Solveeit Logo

Question

Question: Volume of Parallelepiped formed by vectors \(\overrightarrow{a}\) \(\times \) \(\overrightarrow{b}\)...

Volume of Parallelepiped formed by vectors a\overrightarrow{a} ×\times b\overrightarrow{b} , b\overrightarrow{b} ×\times c\overrightarrow{c} and c\overrightarrow{c} ×\times a\overrightarrow{a} is 36 sq. units.
Prove that
A)[abc]=6A)\,\,\,\,\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]=6
B) Volume of tetrahedron formed by vectors a\overrightarrow{a}, b\overrightarrow{b}, c\overrightarrow{c} is 1
C)[a+bb+cc+a]=12C)\,\,\,\left[ \overrightarrow{a}+\overrightarrow{b}\overrightarrow{b}+\overrightarrow{c}\overrightarrow{c}+\overrightarrow{a} \right]=12
D) Differences between vectors are coplanar.

Explanation

Solution

Formula for finding the volume of a parallelepiped is [a\overrightarrow{a} ×\times b\overrightarrow{b} b\overrightarrow{b} ×\times c\overrightarrow{c} c\overrightarrow{c} ×\times a\overrightarrow{a} ]. We can equate the given value of volume with the above formula and through that we can the value of [a\overrightarrow{a} b\overrightarrow{b} c\overrightarrow{c}] as it is the square root of volume of parallelepiped.

Complete step-by-step solution:
Given Volume of Parallelepiped formed by vectors a\overrightarrow{a} ×\times b\overrightarrow{b} , b\overrightarrow{b} ×\times c\overrightarrow{c} and c\overrightarrow{c} ×\times a\overrightarrow{a} is 36 sq. units.
Therefore
[a\overrightarrow{a} ×\times b\overrightarrow{b} b\overrightarrow{b} ×\times c\overrightarrow{c} c\overrightarrow{c} ×\times a\overrightarrow{a} ] = 36
We know that one of the property of box product is [a\overrightarrow{a} ×\times b\overrightarrow{b} b\overrightarrow{b} ×\times c\overrightarrow{c} c\overrightarrow{c} ×\times a\overrightarrow{a} ] = [abc]2{{\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]}^{2}}
By this we can say that [a\overrightarrow{a} b\overrightarrow{b} c\overrightarrow{c}] = 6
Hence the statement (a) is proved
Now let us move to the next statement
We know that Volume of tetrahedron formed by vectors a\overrightarrow{a}, b\overrightarrow{b}, c\overrightarrow{c} is 16\dfrac{1}{6} [a\overrightarrow{a} b\overrightarrow{b} c\overrightarrow{c}]
Therefore , The Volume of tetrahedron formed by vectors a\overrightarrow{a}, b\overrightarrow{b}, c\overrightarrow{c} = 16\dfrac{1}{6} [a\overrightarrow{a} b\overrightarrow{b} c\overrightarrow{c}] = 16\dfrac{1}{6} ( 6 ) = 1
The Volume of tetrahedron formed by vectors a\overrightarrow{a}, b\overrightarrow{b}, c\overrightarrow{c} = 1
Hence the statement (b) is proved.
Now solving the third statement
c) [ a\overrightarrow{a} + b\overrightarrow{b} b\overrightarrow{b} + c\overrightarrow{c} c\overrightarrow{c} + a\overrightarrow{a} ]
We know that [ a\overrightarrow{a} + b\overrightarrow{b} b\overrightarrow{b} + c\overrightarrow{c} c\overrightarrow{c} + a\overrightarrow{a} ] = 2 [a\overrightarrow{a} b\overrightarrow{b} c\overrightarrow{c} ] = 2 ( 6 ) = 12
Hence the statement (c) is proved.
d) ab\overrightarrow{a} -\overrightarrow{b}, bc\overrightarrow{b} -\overrightarrow{c} and ca\overrightarrow{c} - \overrightarrow{a} can be said that they are coplanar only when
[ ab\overrightarrow{a}-\overrightarrow{b} bc\overrightarrow{b}-\overrightarrow{c} ca\overrightarrow{c} - \overrightarrow{a} ] is equal to 0.
We also know that if the lines are ab\overrightarrow{a} - \overrightarrow{b}, bc\overrightarrow{b} - \overrightarrow{c} and ca\overrightarrow{c} - \overrightarrow{a} the determinant of those is 0, which implies they are coplanar.

Note: Learn all the formulae and properties of vectors. The main properties that are used are

  1. [a\overrightarrow{a} ×\times b\overrightarrow{b} b\overrightarrow{b} ×\times c\overrightarrow{c} c\overrightarrow{c} ×\times a\overrightarrow{a} ] = [abc]2{{\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]}^{2}}
  2. [ a\overrightarrow{a} + b\overrightarrow{b} b\overrightarrow{b} + c\overrightarrow{c} c\overrightarrow{c} + a\overrightarrow{a} ] = 2 [a\overrightarrow{a} b\overrightarrow{b} c\overrightarrow{c} ] and
  3. Volume of tetrahedron formed by vectors a\overrightarrow{a}, b\overrightarrow{b}, c\overrightarrow{c} is 16\dfrac{1}{6} [a\overrightarrow{a} b\overrightarrow{b} c\overrightarrow{c}]
    Find the values of determinants without making calculation mistakes. Also learn the formulae of planes formed by the vectors and lines formed by the vectors.