Solveeit Logo

Question

Question: Find the volume of a sphere whose radius is **(i)** 7 cm **(ii)** 0.63 m...

Find the volume of a sphere whose radius is
(i) 7 cm
(ii) 0.63 m

A

(i) 1437.33 cm3^3, (ii) 1.05 m3^3

B

(i) 1437.33 cm3^3, (ii) 1.047816 m3^3

C

(i) 4312/3 cm3^3, (ii) 1.05 m3^3

D

(i) 4312/3 cm3^3, (ii) 1.047816 m3^3

Answer

(i) Radius of sphere = 7 cm
Volume of sphere =43πr3\frac{4}{3}\pi r^3
= 43\frac{4}{3} × 227\frac{22}{7} × 7 cm × 7 cm × 7 cm
=43123= \frac{4312}{3} cm3^3
= 1437.33 cm3^3
Therefore, the volume of the sphere is 1437 cm3^3 .


(ii) Radius of sphere = 0.63 m
Volume of sphere =43πr3\frac{4}{3}\pi r^3
= 43\frac{4}{3} × 227\frac{22}{7} × 0.63 m × 0.63 m × 0.63 m
= 1.047816 m3^3
= 1.05 m3^3 (approx.)
Therefore, the volume of the sphere is 1.05 m3^3 (approximately).

Explanation

Solution

The volume of a sphere is calculated using the formula V=43πr3V = \frac{4}{3}\pi r^3. Using the approximation π227\pi \approx \frac{22}{7}:

For a radius of r=7r = 7 cm: V=43×227×(7 cm)3=43123 cm31437.33 cm3V = \frac{4}{3} \times \frac{22}{7} \times (7 \text{ cm})^3 = \frac{4312}{3} \text{ cm}^3 \approx 1437.33 \text{ cm}^3.

For a radius of r=0.63r = 0.63 m: V=43×227×(0.63 m)3=1.047816 m31.05 m3V = \frac{4}{3} \times \frac{22}{7} \times (0.63 \text{ m})^3 = 1.047816 \text{ m}^3 \approx 1.05 \text{ m}^3.