Solveeit Logo

Question

Question: $\int_{0}^{\frac{7}{2}} \sqrt{x+\frac{1}{\sqrt{x+\frac{1}{x+...}}}} dx$....

072x+1x+1x+...dx\int_{0}^{\frac{7}{2}} \sqrt{x+\frac{1}{\sqrt{x+\frac{1}{x+...}}}} dx.

Answer

143+ln2\frac{14}{3} + \ln 2

Explanation

Solution

To evaluate the integral 072x+1x+1x+...dx\int_{0}^{\frac{7}{2}} \sqrt{x+\frac{1}{\sqrt{x+\frac{1}{x+...}}}} dx, we first simplify the expression inside the integral.

Let y=x+1x+1x+...y = \sqrt{x+\frac{1}{\sqrt{x+\frac{1}{x+...}}}}.
This expression can be written recursively as y=x+1yy = \sqrt{x+\frac{1}{y}}.

Now, we solve for yy in terms of xx:
Square both sides: y2=x+1yy^2 = x + \frac{1}{y}
Multiply by yy (since y=y = \sqrt{\dots}, yy must be positive, so y0y \ne 0):
y3=xy+1y^3 = xy + 1
Rearrange the terms to express xx in terms of yy:
xy=y31xy = y^3 - 1
x=y31yx = \frac{y^3 - 1}{y}
x=y21yx = y^2 - \frac{1}{y}

Now we perform a change of variables for the integral from xx to yy.
First, find dxdx in terms of dydy:
dx=ddy(y21y)dydx = \frac{d}{dy}\left(y^2 - \frac{1}{y}\right) dy
dx=(2y(1y2))dydx = \left(2y - (-\frac{1}{y^2})\right) dy
dx=(2y+1y2)dydx = \left(2y + \frac{1}{y^2}\right) dy

Next, change the limits of integration from xx to yy:

  1. Lower limit: When x=0x=0.
    Substitute x=0x=0 into x=y21yx = y^2 - \frac{1}{y}:
    0=y21y0 = y^2 - \frac{1}{y}
    0=y31y0 = \frac{y^3 - 1}{y}
    Since y0y \ne 0, we must have y31=0y^3 - 1 = 0.
    y3=1y^3 = 1. Since yy must be positive, y=1y=1.

  2. Upper limit: When x=72x=\frac{7}{2}.
    Substitute x=72x=\frac{7}{2} into x=y21yx = y^2 - \frac{1}{y}:
    72=y21y\frac{7}{2} = y^2 - \frac{1}{y}
    72=y31y\frac{7}{2} = \frac{y^3 - 1}{y}
    7y=2(y31)7y = 2(y^3 - 1)
    2y37y2=02y^3 - 7y - 2 = 0
    We look for positive integer roots. Let P(y)=2y37y2P(y) = 2y^3 - 7y - 2.
    Test y=1y=1: P(1)=2(1)37(1)2=272=70P(1) = 2(1)^3 - 7(1) - 2 = 2 - 7 - 2 = -7 \ne 0.
    Test y=2y=2: P(2)=2(2)37(2)2=2(8)142=16142=0P(2) = 2(2)^3 - 7(2) - 2 = 2(8) - 14 - 2 = 16 - 14 - 2 = 0.
    So, y=2y=2 is a root. Since x(y)=y21/yx(y) = y^2 - 1/y is an increasing function for y>0y>0 (x(y)=2y+1/y2>0x'(y) = 2y + 1/y^2 > 0), y=2y=2 is the correct upper limit.

Now substitute yy for the integrand and dxdx into the integral, with the new limits:
072x+1x+1x+...dx=x=0x=72ydx\int_{0}^{\frac{7}{2}} \sqrt{x+\frac{1}{\sqrt{x+\frac{1}{x+...}}}} dx = \int_{x=0}^{x=\frac{7}{2}} y \, dx
=y=1y=2y(2y+1y2)dy= \int_{y=1}^{y=2} y \left(2y + \frac{1}{y^2}\right) dy
=12(2y2+yy2)dy= \int_{1}^{2} \left(2y^2 + \frac{y}{y^2}\right) dy
=12(2y2+1y)dy= \int_{1}^{2} \left(2y^2 + \frac{1}{y}\right) dy

Finally, evaluate the definite integral:
=[2y33+lny]12= \left[ 2 \frac{y^3}{3} + \ln|y| \right]_{1}^{2}
=(2233+ln(2))(2133+ln(1))= \left( 2 \frac{2^3}{3} + \ln(2) \right) - \left( 2 \frac{1^3}{3} + \ln(1) \right)
=(163+ln(2))(23+0)= \left( \frac{16}{3} + \ln(2) \right) - \left( \frac{2}{3} + 0 \right)
=16323+ln(2)= \frac{16}{3} - \frac{2}{3} + \ln(2)
=143+ln(2)= \frac{14}{3} + \ln(2)