Solveeit Logo

Question

Question: VIHAAN JAIN XI-TNPS PROBLEMS IN SUMMATION OF SERIES (a)Compute the sum S, where S=1+2+3-4-5+6+7+8-9...

VIHAAN JAIN XI-TNPS PROBLEMS IN SUMMATION OF SERIES

(a)Compute the sum S, where S=1+2+3-4-5+6+7+8-9-10+...... 2010

(b)Let N=100²+99²-98²-97²+96²+95²-......+4²+3²-1², where the additions and subtractions alternate in pairs. Find N

Let S = 1²+3²+5² +......+(2n-1)² and T = +++...+ Find T2014 n 1 2 3 S₁ S₂ S₃ Sₙ

Find the sum of the series ++++++ a₁ a₂ aₙ 1+a₁ (1+a₁) (1+a₂) (1+a₁) (1+a₂).......(1+aₙ)

Find S = +...+ 1 3 2n-1 5 85 (2n-1)4 +4

Prove that 2010 <+ 2²+1 3²+1 2²-1 3²-1

  • .... + 2010²+1 2010²-1 < 2010+

For each positive integer n the parabola y = (n²+n)x² - (2n+1)x + 1 cuts the x - axis at the point Aₙ and Bₙ. What is the value of ΣΑₙΒₙ ? 100 n=1 n

For every positive integer n given a sequence a₁ = 4n + √4n²-1 √2n+1+√2n-1 . Find the value of Σαₙ i=1

Let 0 <0 < π and put 0₁ = . Then find Σ θ tan θ 3ⁿ 3º (3-tan²θ)

Prove that ∑ Sin(2x - 1) = 50 x=1 Sin 50 Sin 1

Find Σ 9r³-3r²-2r+3 r=1 (3r-2) (3r + 1)

Let a = 1+(1-1)²+1+(1+1), n ≥ 1. Evaluate +++++ n 1 a₁ a₂ 1 a₂₀

Evaluate the sum Σ 2r +3 r(r +1).3ʳ

When 0 < x <1, find the sum of the infinite series: 1 + x² 3 x⁴ (1-x)(1-x³) (1-x³) (1-x)+(1-x⁵)(1-x)

  • .....
Answer

Problems are a collection of unrelated series and summation problems. Solutions provided.

Explanation

Solution

The problems are a collection of unrelated series and summation problems. We will solve each one individually.

Problem (a)

The series is S=1+2+345+6+7+8910+S = 1+2+3-4-5+6+7+8-9-10+\dots up to 2010 terms. The pattern of signs is ++++ + + - - repeating every 5 terms. There are 2010 terms, and 2010=5×4022010 = 5 \times 402. So there are 402 groups of 5 terms. The kk-th group of 5 terms is (5(k1)+1)+(5(k1)+2)+(5(k1)+3)(5(k1)+4)(5(k1)+5)(5(k-1)+1) + (5(k-1)+2) + (5(k-1)+3) - (5(k-1)+4) - (5(k-1)+5). Let m=5(k1)m = 5(k-1). The sum of the kk-th group is (m+1)+(m+2)+(m+3)(m+4)(m+5)=(3m+6)(2m+9)=m3(m+1) + (m+2) + (m+3) - (m+4) - (m+5) = (3m+6) - (2m+9) = m-3. Substituting m=5(k1)m = 5(k-1), the sum of the kk-th group is 5(k1)35(k-1)-3. The total sum SS is the sum of these 402 group sums for k=1k=1 to k=402k=402. S=k=1402(5(k1)3)=k=1402(5k8)S = \sum_{k=1}^{402} (5(k-1)-3) = \sum_{k=1}^{402} (5k-8) S=5k=1402kk=14028=5402×(402+1)28×402S = 5 \sum_{k=1}^{402} k - \sum_{k=1}^{402} 8 = 5 \frac{402 \times (402+1)}{2} - 8 \times 402 S=5×201×4033216=1005×4033216=4050153216=401799S = 5 \times 201 \times 403 - 3216 = 1005 \times 403 - 3216 = 405015 - 3216 = 401799.

Problem (b)

N=1002+992982972+962+952+42+322212N = 100^2+99^2-98^2-97^2+96^2+95^2-\dots+4^2+3^2-2^2-1^2. The pattern of signs is +++ + - - repeating every 4 terms. There are 100 terms, and 100=4×25100 = 4 \times 25. So there are 25 groups of 4 terms. The groups are (1002+992982972)(100^2+99^2-98^2-97^2), (962+952942932)(96^2+95^2-94^2-93^2), ..., (42+322212)(4^2+3^2-2^2-1^2). Consider the kk-th group from the beginning, which starts with (1004(k1))2(100 - 4(k-1))^2. Let a=1004(k1)a = 100 - 4(k-1). The kk-th group is a2+(a1)2(a2)2(a3)2a^2 + (a-1)^2 - (a-2)^2 - (a-3)^2. The sum of the kk-th group is (a2(a2)2)+((a1)2(a3)2)(a^2 - (a-2)^2) + ((a-1)^2 - (a-3)^2). Using x2y2=(xy)(x+y)x^2 - y^2 = (x-y)(x+y): a2(a2)2=(a(a2))(a+(a2))=(2)(2a2)=4a4a^2 - (a-2)^2 = (a - (a-2))(a + (a-2)) = (2)(2a-2) = 4a-4. (a1)2(a3)2=((a1)(a3))((a1)+(a3))=(2)(2a4)=4a8(a-1)^2 - (a-3)^2 = ((a-1) - (a-3))((a-1) + (a-3)) = (2)(2a-4) = 4a-8. The sum of the kk-th group is (4a4)+(4a8)=8a12(4a-4) + (4a-8) = 8a-12. Substituting a=1004(k1)a = 100 - 4(k-1): Sum of kk-th group =8(1004(k1))12=80032(k1)12=78832(k1)= 8(100 - 4(k-1)) - 12 = 800 - 32(k-1) - 12 = 788 - 32(k-1). The first group (k=1k=1) starts with a=100a=100, sum is 78832(0)=788788 - 32(0) = 788. The last group starts with 424^2. a=4a=4. 4=1004(k1)    4(k1)=96    k1=24    k=254 = 100 - 4(k-1) \implies 4(k-1) = 96 \implies k-1 = 24 \implies k=25. So there are 25 groups, from k=1k=1 to k=25k=25. The total sum NN is the sum of these 25 group sums. N=k=125(78832(k1))=k=125(82032k)N = \sum_{k=1}^{25} (788 - 32(k-1)) = \sum_{k=1}^{25} (820 - 32k) N=820×2532k=125k=820×253225×262N = 820 \times 25 - 32 \sum_{k=1}^{25} k = 820 \times 25 - 32 \frac{25 \times 26}{2} N=820×2532×25×13=25×(82032×13)N = 820 \times 25 - 32 \times 25 \times 13 = 25 \times (820 - 32 \times 13) N=25×(820416)=25×404=10100N = 25 \times (820 - 416) = 25 \times 404 = 10100.

Problem (c)

Sn=12+32+52++(2n1)2=k=1n(2k1)2S_n = 1^2+3^2+5^2 + \dots +(2n-1)^2 = \sum_{k=1}^n (2k-1)^2. The sum of the squares of the first nn odd numbers is Sn=n(2n1)(2n+1)3S_n = \frac{n(2n-1)(2n+1)}{3}. Tn=1S1+1S2+1S3++1Sn=k=1n1Sk=k=1n3k(2k1)(2k+1)T_n = \frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_3} + \dots + \frac{1}{S_n} = \sum_{k=1}^n \frac{1}{S_k} = \sum_{k=1}^n \frac{3}{k(2k-1)(2k+1)}. We use partial fraction decomposition for 3k(2k1)(2k+1)\frac{3}{k(2k-1)(2k+1)}. 3k(2k1)(2k+1)=Ak+B2k1+C2k+1\frac{3}{k(2k-1)(2k+1)} = \frac{A}{k} + \frac{B}{2k-1} + \frac{C}{2k+1}. 3=A(2k1)(2k+1)+Bk(2k+1)+Ck(2k1)3 = A(2k-1)(2k+1) + Bk(2k+1) + Ck(2k-1). For k=0k=0: 3=A(1)(1)    A=33 = A(-1)(1) \implies A = -3. For k=1/2k=1/2: 3=B(1/2)(2)    B=33 = B(1/2)(2) \implies B = 3. For k=1/2k=-1/2: 3=C(1/2)(2)    C=33 = C(-1/2)(-2) \implies C = 3. So, 3k(2k1)(2k+1)=3k+32k1+32k+1=3(12k1+12k+11k)\frac{3}{k(2k-1)(2k+1)} = -\frac{3}{k} + \frac{3}{2k-1} + \frac{3}{2k+1} = 3 \left( \frac{1}{2k-1} + \frac{1}{2k+1} - \frac{1}{k} \right). This decomposition does not seem to lead to a telescoping sum easily. Let's try a different approach for the partial fraction: 3k(2k1)(2k+1)=Ak+B4k21\frac{3}{k(2k-1)(2k+1)} = \frac{A}{k} + \frac{B}{4k^2-1}. This is not a standard partial fraction form. Let's try 3k(4k21)=Ak+B2k1+C2k+1\frac{3}{k(4k^2-1)} = \frac{A}{k} + \frac{B}{2k-1} + \frac{C}{2k+1}. We already found A=3,B=3,C=3A=-3, B=3, C=3. The term is 3(12k11k+12k+1)3 \left( \frac{1}{2k-1} - \frac{1}{k} + \frac{1}{2k+1} \right). 3((12k11k)+12k+1)=3(k(2k1)k(2k1)+12k+1)=3(1kk(2k1)+12k+1)3 \left( \left( \frac{1}{2k-1} - \frac{1}{k} \right) + \frac{1}{2k+1} \right) = 3 \left( \frac{k - (2k-1)}{k(2k-1)} + \frac{1}{2k+1} \right) = 3 \left( \frac{1-k}{k(2k-1)} + \frac{1}{2k+1} \right). This doesn't telescope.

Let's re-evaluate the partial fraction slightly differently. 3k(2k1)(2k+1)=31k(4k21)\frac{3}{k(2k-1)(2k+1)} = 3 \frac{1}{k(4k^2-1)}. Consider the term 1k(4k21)\frac{1}{k(4k^2-1)}. 1k(2k1)(2k+1)=Ak+B2k1+C2k+1\frac{1}{k(2k-1)(2k+1)} = \frac{A}{k} + \frac{B}{2k-1} + \frac{C}{2k+1}. 1=A(2k1)(2k+1)+Bk(2k+1)+Ck(2k1)1 = A(2k-1)(2k+1) + Bk(2k+1) + Ck(2k-1). k=0    1=A(1)(1)    A=1k=0 \implies 1 = A(-1)(1) \implies A=-1. k=1/2    1=B(1/2)(2)    B=1k=1/2 \implies 1 = B(1/2)(2) \implies B=1. k=1/2    1=C(1/2)(2)    C=1k=-1/2 \implies 1 = C(-1/2)(-2) \implies C=1. So 1k(2k1)(2k+1)=1k+12k1+12k+1\frac{1}{k(2k-1)(2k+1)} = -\frac{1}{k} + \frac{1}{2k-1} + \frac{1}{2k+1}. The term in the sum is 3k(2k1)(2k+1)=3(12k1+12k+11k)\frac{3}{k(2k-1)(2k+1)} = 3 \left( \frac{1}{2k-1} + \frac{1}{2k+1} - \frac{1}{k} \right). Let ak=3k(2k1)(2k+1)a_k = \frac{3}{k(2k-1)(2k+1)}. ak=3((12k11k)+12k+1)a_k = 3 \left( \left( \frac{1}{2k-1} - \frac{1}{k} \right) + \frac{1}{2k+1} \right). ak=3(k(2k1)k(2k1)+12k+1)=3(1kk(2k1)+12k+1)a_k = 3 \left( \frac{k - (2k-1)}{k(2k-1)} + \frac{1}{2k+1} \right) = 3 \left( \frac{1-k}{k(2k-1)} + \frac{1}{2k+1} \right). This still doesn't look right.

Let's look at the structure of SkS_k: Sk=k(2k1)(2k+1)3S_k = \frac{k(2k-1)(2k+1)}{3}. Consider the term 1Sk=3k(2k1)(2k+1)\frac{1}{S_k} = \frac{3}{k(2k-1)(2k+1)}. Maybe we can express this in the form f(k)f(k+1)f(k) - f(k+1) or similar. Let's consider the expression 12k112k+1=(2k+1)(2k1)(2k1)(2k+1)=2(2k1)(2k+1)\frac{1}{2k-1} - \frac{1}{2k+1} = \frac{(2k+1)-(2k-1)}{(2k-1)(2k+1)} = \frac{2}{(2k-1)(2k+1)}. This is not directly related to the denominator k(2k1)(2k+1)k(2k-1)(2k+1).

Let's consider 1k(2k1)1(k+1)(2k+1)\frac{1}{k(2k-1)} - \frac{1}{(k+1)(2k+1)}. This is too complex.

Let's try to manipulate the partial fraction form 3(12k1+12k+11k)3 \left( \frac{1}{2k-1} + \frac{1}{2k+1} - \frac{1}{k} \right). Tn=k=1n3(12k1+12k+11k)T_n = \sum_{k=1}^n 3 \left( \frac{1}{2k-1} + \frac{1}{2k+1} - \frac{1}{k} \right). =3k=1n(12k11k)+3k=1n12k+1= 3 \sum_{k=1}^n \left( \frac{1}{2k-1} - \frac{1}{k} \right) + 3 \sum_{k=1}^n \frac{1}{2k+1}. k=1n(12k11k)=(1111)+(1312)+(1513)+(1714)++(12n11n)\sum_{k=1}^n (\frac{1}{2k-1} - \frac{1}{k}) = (\frac{1}{1} - \frac{1}{1}) + (\frac{1}{3} - \frac{1}{2}) + (\frac{1}{5} - \frac{1}{3}) + (\frac{1}{7} - \frac{1}{4}) + \dots + (\frac{1}{2n-1} - \frac{1}{n}). This is not telescoping.

Let's reconsider the form Sk=k(2k1)(2k+1)3S_k = \frac{k(2k-1)(2k+1)}{3}. Maybe we can write 1Sk\frac{1}{S_k} as a difference of terms involving SkS_k or similar expressions. Consider the expression 1k(2k1)1(k+1)(2k+1)\frac{1}{k(2k-1)} - \frac{1}{(k+1)(2k+1)}. 1k(2k1)1(k+1)(2k+1)=(k+1)(2k+1)k(2k1)k(2k1)(k+1)(2k+1)\frac{1}{k(2k-1)} - \frac{1}{(k+1)(2k+1)} = \frac{(k+1)(2k+1) - k(2k-1)}{k(2k-1)(k+1)(2k+1)} =(2k2+3k+1)(2k2k)k(2k1)(k+1)(2k+1)=4k+1k(2k1)(k+1)(2k+1)= \frac{(2k^2+3k+1) - (2k^2-k)}{k(2k-1)(k+1)(2k+1)} = \frac{4k+1}{k(2k-1)(k+1)(2k+1)}. This is not 3k(2k1)(2k+1)\frac{3}{k(2k-1)(2k+1)}.

Let's try to relate SkS_k to Sk1S_{k-1}. Sk=Sk1+(2k1)2S_k = S_{k-1} + (2k-1)^2. 1Sk=1Sk1+(2k1)2\frac{1}{S_k} = \frac{1}{S_{k-1} + (2k-1)^2}.

Let's look at the structure of Sk=k(4k21)3S_k = \frac{k(4k^2-1)}{3}. Consider the term 1Sk=3k(4k21)\frac{1}{S_k} = \frac{3}{k(4k^2-1)}. Maybe we can write 1Sk=C(1k(2k1)1(k+1)(2k+1))\frac{1}{S_k} = C \left( \frac{1}{k(2k-1)} - \frac{1}{(k+1)(2k+1)} \right)? No, this did not work. Maybe 1Sk=C(1k1k+1)\frac{1}{S_k} = C \left( \frac{1}{k} - \frac{1}{k+1} \right)? No.

Let's try to express 3k(2k1)(2k+1)\frac{3}{k(2k-1)(2k+1)} as a difference of two terms. Consider the terms 1k(2k1)\frac{1}{k(2k-1)} and 1(k+1)(2k+1)\frac{1}{(k+1)(2k+1)}. 1k(2k1)1(k+1)(2k+1)=(k+1)(2k+1)k(2k1)k(2k1)(k+1)(2k+1)=4k+1k(2k1)(k+1)(2k+1)\frac{1}{k(2k-1)} - \frac{1}{(k+1)(2k+1)} = \frac{(k+1)(2k+1) - k(2k-1)}{k(2k-1)(k+1)(2k+1)} = \frac{4k+1}{k(2k-1)(k+1)(2k+1)}.

Let's try the identity: 1AB=1BA(1A1B)\frac{1}{A B} = \frac{1}{B-A} (\frac{1}{A} - \frac{1}{B}). 3k(2k1)(2k+1)=3(4k21)k\frac{3}{k(2k-1)(2k+1)} = \frac{3}{(4k^2-1)k}. 1k(4k21)=12(1k(2k1)1k(2k+1))\frac{1}{k(4k^2-1)} = \frac{1}{2} \left( \frac{1}{k(2k-1)} - \frac{1}{k(2k+1)} \right) is incorrect.

Let's use the partial fraction form: 3k(2k1)(2k+1)=32k1+32k+13k\frac{3}{k(2k-1)(2k+1)} = \frac{3}{2k-1} + \frac{3}{2k+1} - \frac{3}{k}. Tn=k=1n(32k1+32k+13k)T_n = \sum_{k=1}^n \left( \frac{3}{2k-1} + \frac{3}{2k+1} - \frac{3}{k} \right). Tn=3k=1n(12k1+12k+11k)T_n = 3 \sum_{k=1}^n \left( \frac{1}{2k-1} + \frac{1}{2k+1} - \frac{1}{k} \right). =3k=1n(12k11k)+3k=1n12k+1= 3 \sum_{k=1}^n \left( \frac{1}{2k-1} - \frac{1}{k} \right) + 3 \sum_{k=1}^n \frac{1}{2k+1}. k=1n(12k11k)=(11)+(1312)+(1513)++(12n11n)\sum_{k=1}^n (\frac{1}{2k-1} - \frac{1}{k}) = (1-1) + (\frac{1}{3}-\frac{1}{2}) + (\frac{1}{5}-\frac{1}{3}) + \dots + (\frac{1}{2n-1}-\frac{1}{n}). =(1+13+15++12n1)(1+12+13++1n)= (1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}) - (1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}). Let Hm=1+12++1mH_m = 1 + \frac{1}{2} + \dots + \frac{1}{m}. The first part is 1+13++12n11 + \frac{1}{3} + \dots + \frac{1}{2n-1}. H2n=1+12+13+14++12n1+12nH_{2n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2n-1} + \frac{1}{2n}. H2n=(1+13++12n1)+(12+14++12n)H_{2n} = (1 + \frac{1}{3} + \dots + \frac{1}{2n-1}) + (\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}). H2n=(1+13++12n1)+12(1+12++1n)=(1+13++12n1)+12HnH_{2n} = (1 + \frac{1}{3} + \dots + \frac{1}{2n-1}) + \frac{1}{2}(1 + \frac{1}{2} + \dots + \frac{1}{n}) = (1 + \frac{1}{3} + \dots + \frac{1}{2n-1}) + \frac{1}{2}H_n. So 1+13++12n1=H2n12Hn1 + \frac{1}{3} + \dots + \frac{1}{2n-1} = H_{2n} - \frac{1}{2}H_n. The first sum is (H2n12Hn)Hn=H2n32Hn(H_{2n} - \frac{1}{2}H_n) - H_n = H_{2n} - \frac{3}{2}H_n.

The second sum is 3k=1n12k+1=3(13+15++12n+1)3 \sum_{k=1}^n \frac{1}{2k+1} = 3 (\frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n+1}). Tn=3(H2n32Hn)+3(13+15++12n+1)T_n = 3 (H_{2n} - \frac{3}{2}H_n) + 3 (\frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n+1}). Tn=3H2n92Hn+(1+35++32n+1)T_n = 3 H_{2n} - \frac{9}{2}H_n + (1 + \frac{3}{5} + \dots + \frac{3}{2n+1}). This is not simplifying.

Let's recheck the partial fraction. 3k(2k1)(2k+1)=3k+32k1+32k+1\frac{3}{k(2k-1)(2k+1)} = \frac{-3}{k} + \frac{3}{2k-1} + \frac{3}{2k+1}. Tn=k=1n(32k13k+32k+1)T_n = \sum_{k=1}^n \left( \frac{3}{2k-1} - \frac{3}{k} + \frac{3}{2k+1} \right). Let's rearrange the terms: 3(12k11k+12k+1)3 \left( \frac{1}{2k-1} - \frac{1}{k} + \frac{1}{2k+1} \right). Tn=3k=1n(12k11k)+3k=1n12k+1T_n = 3 \sum_{k=1}^n \left( \frac{1}{2k-1} - \frac{1}{k} \right) + 3 \sum_{k=1}^n \frac{1}{2k+1}. The first sum: k=1n(12k11k)=(11)+(1312)+(1513)++(12n11n)\sum_{k=1}^n (\frac{1}{2k-1} - \frac{1}{k}) = (1-1) + (\frac{1}{3}-\frac{1}{2}) + (\frac{1}{5}-\frac{1}{3}) + \dots + (\frac{1}{2n-1}-\frac{1}{n}). =(1+13+15++12n1)(1+12++1n)= (1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}) - (1 + \frac{1}{2} + \dots + \frac{1}{n}). Let Hm=1+12++1mH_m = 1 + \frac{1}{2} + \dots + \frac{1}{m}. The first part is 1+13++12n11 + \frac{1}{3} + \dots + \frac{1}{2n-1}. H2n=1+12+13+14++12n1+12nH_{2n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2n-1} + \frac{1}{2n}. H2n=(1+13++12n1)+(12+14++12n)H_{2n} = (1 + \frac{1}{3} + \dots + \frac{1}{2n-1}) + (\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}). H2n=(1+13++12n1)+12(1+12++1n)=(1+13++12n1)+12HnH_{2n} = (1 + \frac{1}{3} + \dots + \frac{1}{2n-1}) + \frac{1}{2}(1 + \frac{1}{2} + \dots + \frac{1}{n}) = (1 + \frac{1}{3} + \dots + \frac{1}{2n-1}) + \frac{1}{2}H_n. So 1+13++12n1=H2n12Hn1 + \frac{1}{3} + \dots + \frac{1}{2n-1} = H_{2n} - \frac{1}{2}H_n. The first sum is (H2n12Hn)Hn=H2n32Hn(H_{2n} - \frac{1}{2}H_n) - H_n = H_{2n} - \frac{3}{2}H_n.

The second sum: 3k=1n12k+1=3(13+15++12n+1)3 \sum_{k=1}^n \frac{1}{2k+1} = 3 (\frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n+1}). Tn=3(H2n32Hn)+(1+35++32n+1)T_n = 3 (H_{2n} - \frac{3}{2}H_n) + (1 + \frac{3}{5} + \dots + \frac{3}{2n+1}). This is not simplifying.

Let's try grouping the terms differently in the partial fraction. 3k(2k1)(2k+1)=32k13k+32k+1\frac{3}{k(2k-1)(2k+1)} = \frac{3}{2k-1} - \frac{3}{k} + \frac{3}{2k+1}. Let uk=32k13ku_k = \frac{3}{2k-1} - \frac{3}{k}. Tn=k=1n(uk+32k+1)=k=1nuk+k=1n32k+1T_n = \sum_{k=1}^n (u_k + \frac{3}{2k+1}) = \sum_{k=1}^n u_k + \sum_{k=1}^n \frac{3}{2k+1}. k=1nuk=k=1n(32k13k)=3k=1n(12k11k)\sum_{k=1}^n u_k = \sum_{k=1}^n (\frac{3}{2k-1} - \frac{3}{k}) = 3 \sum_{k=1}^n (\frac{1}{2k-1} - \frac{1}{k}). This sum is 3[(11)+(1312)+(1513)++(12n11n)]3 [(1-1) + (\frac{1}{3}-\frac{1}{2}) + (\frac{1}{5}-\frac{1}{3}) + \dots + (\frac{1}{2n-1}-\frac{1}{n})]. =3[(1+13++12n1)(1+12++1n)]=3[(H2n12Hn)Hn]=3[H2n32Hn]= 3 [ (1 + \frac{1}{3} + \dots + \frac{1}{2n-1}) - (1 + \frac{1}{2} + \dots + \frac{1}{n}) ] = 3 [ (H_{2n} - \frac{1}{2}H_n) - H_n ] = 3 [ H_{2n} - \frac{3}{2}H_n ].

The second sum is 3k=1n12k+1=3(13+15++12n+1)3 \sum_{k=1}^n \frac{1}{2k+1} = 3 (\frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n+1}). Tn=3[H2n32Hn]+3[13+15++12n+1]T_n = 3 [ H_{2n} - \frac{3}{2}H_n ] + 3 [\frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n+1}]. On+1=1+13++12n1+12n+1=On+12n+1O_{n+1} = 1 + \frac{1}{3} + \dots + \frac{1}{2n-1} + \frac{1}{2n+1} = O_n + \frac{1}{2n+1}. k=1n12k+1=(On+11)=(H2(n+1)12Hn+11)\sum_{k=1}^n \frac{1}{2k+1} = (O_{n+1} - 1) = (H_{2(n+1)} - \frac{1}{2}H_{n+1} - 1).

Let's try to write 3k(2k1)(2k+1)\frac{3}{k(2k-1)(2k+1)} as f(2k1)f(2k+1)f(2k-1) - f(2k+1) or similar. Consider the expression 12k112k+1=2(2k1)(2k+1)\frac{1}{2k-1} - \frac{1}{2k+1} = \frac{2}{(2k-1)(2k+1)}.

Let's consider the identity 1(2k1)(2k+1)=12(12k112k+1)\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} (\frac{1}{2k-1} - \frac{1}{2k+1}). 3k(2k1)(2k+1)=3k1(2k1)(2k+1)=3k12(12k112k+1)=32(1k(2k1)1k(2k+1))\frac{3}{k(2k-1)(2k+1)} = \frac{3}{k} \frac{1}{(2k-1)(2k+1)} = \frac{3}{k} \frac{1}{2} (\frac{1}{2k-1} - \frac{1}{2k+1}) = \frac{3}{2} (\frac{1}{k(2k-1)} - \frac{1}{k(2k+1)}). As shown above, this does not directly telescope.

Let's consider the expression 12k11k=k(2k1)k(2k1)=1kk(2k1)\frac{1}{2k-1} - \frac{1}{k} = \frac{k - (2k-1)}{k(2k-1)} = \frac{1-k}{k(2k-1)}. Consider the expression 1k12k+1=2k+1kk(2k+1)=k+1k(2k+1)\frac{1}{k} - \frac{1}{2k+1} = \frac{2k+1 - k}{k(2k+1)} = \frac{k+1}{k(2k+1)}.

Let's try to find a telescoping sum of the form f(k)f(k1)f(k) - f(k-1). Consider f(k)=k1k(2k1)f(k) = \frac{k-1}{k(2k-1)}. f(k)f(k1)=k1k(2k1)(k1)1(k1)(2(k1)1)=k1k(2k1)k2(k1)(2k3)f(k) - f(k-1) = \frac{k-1}{k(2k-1)} - \frac{(k-1)-1}{(k-1)(2(k-1)-1)} = \frac{k-1}{k(2k-1)} - \frac{k-2}{(k-1)(2k-3)}.

Let's look at the term 3k(2k1)(2k+1)\frac{3}{k(2k-1)(2k+1)}. Consider the expression 12k1\frac{1}{2k-1}. Consider the expression 12k+1\frac{1}{2k+1}. Consider the expression 1k\frac{1}{k}.

Let's try to write 1k(2k1)(2k+1)\frac{1}{k(2k-1)(2k+1)} in the form A1k+B12k1+C12k+1A \frac{1}{k} + B \frac{1}{2k-1} + C \frac{1}{2k+1}. We found A=1,B=1,C=1A=-1, B=1, C=1. So 3k(2k1)(2k+1)=3(1k+12k1+12k+1)\frac{3}{k(2k-1)(2k+1)} = 3 (-\frac{1}{k} + \frac{1}{2k-1} + \frac{1}{2k+1}).

Let's consider the expression 12k112k+1\frac{1}{2k-1} - \frac{1}{2k+1}. Let's consider the expression 1k1k+1\frac{1}{k} - \frac{1}{k+1}.

Let's try the identity 1(2k1)(2k+1)=12(12k112k+1)\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} (\frac{1}{2k-1} - \frac{1}{2k+1}). 3k(2k1)(2k+1)=3k12(12k112k+1)\frac{3}{k(2k-1)(2k+1)} = \frac{3}{k} \frac{1}{2} (\frac{1}{2k-1} - \frac{1}{2k+1}).

Let's try to write 3k(2k1)(2k+1)\frac{3}{k(2k-1)(2k+1)} as f(k)f(k+1)f(k) - f(k+1). Consider f(k)=Ck(2k1)f(k) = \frac{C}{k(2k-1)}. f(k)f(k+1)=C(1k(2k1)1(k+1)(2k+1))=C4k+1k(2k1)(k+1)(2k+1)f(k) - f(k+1) = C \left( \frac{1}{k(2k-1)} - \frac{1}{(k+1)(2k+1)} \right) = C \frac{4k+1}{k(2k-1)(k+1)(2k+1)}.

Consider f(k)=C2k1f(k) = \frac{C}{2k-1}. f(k)f(k+1)=2C(2k1)(2k+1)f(k) - f(k+1) = \frac{2C}{(2k-1)(2k+1)}.

Consider f(k)=Ckf(k) = \frac{C}{k}. f(k)f(k+1)=Ck(k+1)f(k) - f(k+1) = \frac{C}{k(k+1)}.

Let's try to write 3k(2k1)(2k+1)\frac{3}{k(2k-1)(2k+1)} as a difference of terms involving kk and k+1k+1. Consider Ak(2k1)B(k+1)(2k+1)\frac{A}{k(2k-1)} - \frac{B}{(k+1)(2k+1)}.

Let's consider the identity: 1k(2k1)(2k+1)=12(1k(2k1)1k(2k+1))\frac{1}{k(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{k(2k-1)} - \frac{1}{k(2k+1)} \right) is incorrect.