Solveeit Logo

Question

Question: The ratio of speed of sound wave in steel to that of water is approximately. Given $Y = 2.0 \times 1...

The ratio of speed of sound wave in steel to that of water is approximately. Given Y=2.0×1011Y = 2.0 \times 10^{11} Pa(for steel) and compressibility of water = 45.8 x 101110^{-11} Pa1Pa^{-1} and density of steel 7800 kg. m3m^{-3}

A

3.426

B

8.264

C

12.567

D

18.129

Answer

3.426

Explanation

Solution

Solution:

  1. Speed in Steel:

    vsteel=Yρsteel=2.0×101178002.564×1075064m/sv_{\text{steel}} = \sqrt{\dfrac{Y}{\rho_{\text{steel}}}} = \sqrt{\dfrac{2.0 \times 10^{11}}{7800}} \approx \sqrt{2.564 \times 10^7} \approx 5064\, \text{m/s}

  2. Speed in Water:

    The bulk modulus of water, K=1compressibility=145.8×10112.183×109PaK = \dfrac{1}{\text{compressibility}} = \dfrac{1}{45.8 \times 10^{-11}} \approx 2.183 \times 10^9\, \text{Pa}.
    Using density of water ρwater1000kg/m3\rho_{\text{water}} \approx 1000\, \text{kg/m}^3,
    vwater=Kρwater=2.183×10910002.183×1061477m/sv_{\text{water}} = \sqrt{\dfrac{K}{\rho_{\text{water}}}} = \sqrt{\dfrac{2.183 \times 10^9}{1000}} \approx \sqrt{2.183 \times 10^6} \approx 1477\, \text{m/s}.

  3. Ratio of Speeds:

    vsteelvwater506414773.426\dfrac{v_{\text{steel}}}{v_{\text{water}}} \approx \dfrac{5064}{1477} \approx 3.426.

Core Explanation:
Calculated speeds using v=modulusρv = \sqrt{\frac{\text{modulus}}{\rho}} for steel and water, then their ratio approximates 3.426.