Solveeit Logo

Question

Question: Light with energy flux 36W/cm² is incident on a well polished metal square plate of side 2cm. The fo...

Light with energy flux 36W/cm² is incident on a well polished metal square plate of side 2cm. The force experienced by it is:

A

0.96μN

B

0.24 μN

Answer

0.96μN

Explanation

Solution

The problem asks us to calculate the force experienced by a well-polished metal square plate when light with a given energy flux is incident on it.

1. Identify Given Parameters and Convert to SI Units:

  • Energy flux (intensity), I=36 W/cm2I = 36 \text{ W/cm}^2. To convert to W/m2^2: I=36 W/cm2×(100 cm1 m)2=36×104 W/m2I = 36 \text{ W/cm}^2 \times \left(\frac{100 \text{ cm}}{1 \text{ m}}\right)^2 = 36 \times 10^4 \text{ W/m}^2
  • Side of the square plate, s=2 cms = 2 \text{ cm}. To convert to meters: s=2×102 ms = 2 \times 10^{-2} \text{ m}
  • Area of the square plate, A=s2=(2×102 m)2=4×104 m2A = s^2 = (2 \times 10^{-2} \text{ m})^2 = 4 \times 10^{-4} \text{ m}^2.
  • Speed of light, c=3×108 m/sc = 3 \times 10^8 \text{ m/s}.
  • The plate is "well polished metal", which means it is a perfectly reflecting surface.

2. Formula for Force due to Radiation Pressure: For a perfectly reflecting surface, the force FF exerted by light incident normally on a surface of area AA with intensity II is given by: F=2IAcF = \frac{2IA}{c}

3. Calculate the Force: Substitute the values into the formula: F=2×(36×104 W/m2)×(4×104 m2)3×108 m/sF = \frac{2 \times (36 \times 10^4 \text{ W/m}^2) \times (4 \times 10^{-4} \text{ m}^2)}{3 \times 10^8 \text{ m/s}} F=2×36×4×10443×108F = \frac{2 \times 36 \times 4 \times 10^{4-4}}{3 \times 10^8} F=2×36×4×1003×108F = \frac{2 \times 36 \times 4 \times 10^0}{3 \times 10^8} F=2883×108F = \frac{288}{3 \times 10^8} F=96108F = \frac{96}{10^8} F=96×108 NF = 96 \times 10^{-8} \text{ N}

4. Convert to Micro Newtons (μN): Since 1 μN=106 N1 \text{ μN} = 10^{-6} \text{ N}: F=96×108 N=0.96×106 NF = 96 \times 10^{-8} \text{ N} = 0.96 \times 10^{-6} \text{ N} F=0.96 μNF = 0.96 \text{ μN}

The final answer is 0.96μN.