Solveeit Logo

Question

Question: The remainder, when $7^{103}$ is divided by 23, is equal to:...

The remainder, when 71037^{103} is divided by 23, is equal to:

A

6

B

17

C

9

D

14

Answer

14

Explanation

Solution

To find the remainder when 71037^{103} is divided by 23, we can use Fermat's Little Theorem.

Fermat's Little Theorem states that if pp is a prime number, then for any integer aa not divisible by pp, ap11(modp)a^{p-1} \equiv 1 \pmod{p}. In this case, p=23p = 23, so 7221(mod23)7^{22} \equiv 1 \pmod{23}.

We can write 103=22×4+15103 = 22 \times 4 + 15, so 7103=(722)4×71514×715715(mod23)7^{103} = (7^{22})^4 \times 7^{15} \equiv 1^4 \times 7^{15} \equiv 7^{15} \pmod{23}.

Now we need to compute 715(mod23)7^{15} \pmod{23}. We can do this by finding a pattern: 717(mod23)7^1 \equiv 7 \pmod{23} 72493(mod23)7^2 \equiv 49 \equiv 3 \pmod{23} 7372×73×7=21(mod23)7^3 \equiv 7^2 \times 7 \equiv 3 \times 7 = 21 \pmod{23} 7473×721×7=1479(mod23)7^4 \equiv 7^3 \times 7 \equiv 21 \times 7 = 147 \equiv 9 \pmod{23} 7574×79×7=6317(mod23)7^5 \equiv 7^4 \times 7 \equiv 9 \times 7 = 63 \equiv 17 \pmod{23} 7675×717×7=1194(mod23)7^6 \equiv 7^5 \times 7 \equiv 17 \times 7 = 119 \equiv 4 \pmod{23} 7776×74×7=285(mod23)7^7 \equiv 7^6 \times 7 \equiv 4 \times 7 = 28 \equiv 5 \pmod{23} 7877×75×7=3512(mod23)7^8 \equiv 7^7 \times 7 \equiv 5 \times 7 = 35 \equiv 12 \pmod{23} 7978×712×7=8415(mod23)7^9 \equiv 7^8 \times 7 \equiv 12 \times 7 = 84 \equiv 15 \pmod{23} 71079×715×7=10513(mod23)7^{10} \equiv 7^9 \times 7 \equiv 15 \times 7 = 105 \equiv 13 \pmod{23} 711710×713×7=91221(mod23)7^{11} \equiv 7^{10} \times 7 \equiv 13 \times 7 = 91 \equiv 22 \equiv -1 \pmod{23}

Using 7111(mod23)7^{11} \equiv -1 \pmod{23}, we can write 715=711×74(1)×99(mod23)7^{15} = 7^{11} \times 7^4 \equiv (-1) \times 9 \equiv -9 \pmod{23}. Since we want a positive remainder, 9239=14(mod23)-9 \equiv 23 - 9 = 14 \pmod{23}.

Therefore, the remainder is 14.