Solveeit Logo

Question

Question: If $x^y = e^{x-y}$, then show that $\frac{dy}{dx} = \frac{log x}{(1+log x)^2}$...

If xy=exyx^y = e^{x-y}, then show that dydx=logx(1+logx)2\frac{dy}{dx} = \frac{log x}{(1+log x)^2}

Answer

lnx(1+lnx)2\frac{\ln x}{(1+\ln x)^2}

Explanation

Solution

Solution:

Given

xy=exy.x^y = e^{x-y}.

Taking natural logarithms on both sides,

ln(xy)=ln(exy)    ylnx=xy.\ln(x^y) = \ln\left(e^{x-y}\right) \implies y\ln x = x - y.

Rearrange:

ylnx+y=x    y(1+lnx)=x    y=x1+lnx.y\ln x + y = x \implies y(1 + \ln x) = x \implies y = \frac{x}{1+\ln x}.

Differentiate using the quotient rule with u=xu = x and v=1+lnxv = 1+\ln x (so that u=1u'=1 and v=1xv'=\frac{1}{x}):

dydx=uvuvv2=1(1+lnx)x1x(1+lnx)2=1+lnx1(1+lnx)2=lnx(1+lnx)2.\frac{dy}{dx} = \frac{u'v - uv'}{v^2} = \frac{1\cdot (1+\ln x) - x\cdot \frac{1}{x}}{(1+\ln x)^2} = \frac{1+\ln x - 1}{(1+\ln x)^2} = \frac{\ln x}{(1+\ln x)^2}.

Explanation (Core):

  1. Take ln\ln on both sides: ylnx=xyy\ln x = x-y.
  2. Solve for yy: y=x1+lnxy = \frac{x}{1+\ln x}.
  3. Differentiate using the quotient rule to get dydx=lnx(1+lnx)2\displaystyle \frac{dy}{dx} = \frac{\ln x}{(1+\ln x)^2}.