Solveeit Logo

Question

Question: vessel depth x is half filled with oil of refractive index \(\mu _ { 1 }\)and the other half is fill...

vessel depth x is half filled with oil of refractive index μ1\mu _ { 1 }and the other half is filled with water of refractive index μ2\mu _ { 2 }The apparent depth of the vessel when viewed from above is:

A

x(μ1+μ2)2μ1μ2\frac { x \left( \mu _ { 1 } + \mu _ { 2 } \right) } { 2 \mu _ { 1 } \mu _ { 2 } }

B

C

D

Answer

x(μ1+μ2)2μ1μ2\frac { x \left( \mu _ { 1 } + \mu _ { 2 } \right) } { 2 \mu _ { 1 } \mu _ { 2 } }

Explanation

Solution

:

As refractive index, μ= Realdepth  Apparent depth \mu = \frac { \text { Realdepth } } { \text { Apparent depth } }

\thereforeApparent depth of the vessel when viewed from above is

=x2(μ2+μ1μ1μ2)=x(μ1+μ2)2μ1μ2= \frac { x } { 2 } \left( \frac { \mu _ { 2 } + \mu _ { 1 } } { \mu _ { 1 } \mu _ { 2 } } \right) = \frac { x \left( \mu _ { 1 } + \mu _ { 2 } \right) } { 2 \mu _ { 1 } \mu _ { 2 } }