Solveeit Logo

Question

Mathematics Question on Differential equations

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:y=a2x2x(a,a):x+y(dydx)=0(y0)y=\sqrt{a^2-x^2}\,\,\, x∈(-a,a) :x+y (\frac{dy}{dx}) =0(y≠0)

Answer

y=a2x2y=\sqrt{a^2-x^2}
Differentiating both sides of this equation with respect to x,we get:
dydx=ddx(a2x2)\frac{dy}{dx}=\frac{d}{dx}(√a^2-x^2)
dydx=12a2x2.ddx(a2x2)⇒\frac{dy}{dx}=\frac{1}{2√a^2-x^2}.\frac{d}{dx}(a^2-x^2)
=12a2x2(2x)=\frac{1}{2√a^2-x^2}(-2x)
=xa2x2=-\frac{x}{√a^2-x^2}
Substituting the value of dydx\frac{dy}{dx} in the given differential equation,we get:
L.H.S.=x+ydydx=x+a2x2×xa2x2x+y\frac{dy}{dx}=x+√a^2-x^2×\frac{-x}{√a^2-x^2}
=xx=x-x
=0=0
=R.H.S.
Hence,the given function is the solution of the corresponding differential equation.