Solveeit Logo

Question

Mathematics Question on Differential equations

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: x+y=tan1y:y2y+y2+1=0x+y=tan^{-1}y :y^2y'+y^2+1=0

Answer

x+y=tan-1y
Differentiating both sides of this equation with respect to x,we get:
ddx(x+y)=ddx(tan1y)\frac{d}{dx}(x+y)=\frac{d}{dx}(tan^{-1}y)
1+y=[11+y2]y⇒1+y'=[\frac{1}{1+y^2}]y'
y[11+y21]=1⇒y'[\frac{1}{1+y2-1}]=1
y[1(1+y2)1+y2]=1⇒y'[\frac{1-(1+y^2)}{1+y^2}]=1
y[y/1+y2]=1⇒y'[-\frac{y}{/1+y2}]=1
y=(1+y2)y2⇒y'=-(\frac{1+y^2)}{y^2}
Substituting the value of y'in the given differential equation,we get:
L.H.S.=y2y'+y2+1=y2[-(1+y2)y2]+y2+1(\frac{1+y2)}{y2}]+y^2+1
=1y2+y2+1=-1-y^2+y^2+1
=0
=R.H.S.
Henve,the given function is the solution of the corresponding differential equation.