Solveeit Logo

Question

Mathematics Question on Differential equations

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: y-cos y=x :(ysin y+cosy+x)y'=y

Answer

y-cos y=x.….(1)
Differentiating both sides of the equation with respect to x,we get:
dydxddx\frac{dy}{dx}-\frac{d}{dx}(cosy)=ddx(x)\frac{d}{dx}(x)
⇒y'+sin y.y'=1
⇒y'(1+siny)=1
y=11+siny⇒y'=\frac{1}{1+siny}
Substituting the value of y'in equation(1),we get:
L.H.S.=(ysiny+cosy+x)y'
=(ysiny+cosy+y-cosy)×11+siny\frac{1}{1+siny}
=y(1+siny).11+siny\frac{1}{1+siny}
=y
=R.H.S.
Hence,the given function is the solution of the corresponding differential equation.