Solveeit Logo

Question

Mathematics Question on Differential equations

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: xy = log y+C : y'= y21xy(xy1)\frac{y^2}{1-xy}\,(xy\neq 1)

Answer

xy= log y+C
Differentiating both sides of this equation with respect to x, we get:
ddx(xy)=ddx(logy)\frac{d}{dx}(xy)=\frac{d}{dx}\,(log \,y)

y.ddx(x)+x.dydx=1ydydx\Rightarrow y.\frac{d}{dx}(x)+x.\frac{dy}{dx}=\frac{1}{y}\frac{dy}{dx}

y+xy=1yy\Rightarrow y+xy'=\frac{1}{yy'}

y2+xyy=y\Rightarrow y^2+xyy'=y'

y=y21xy\Rightarrow y'=\frac{y^2}{1-xy}

∴ L.H.S. = R.H.S.

Hence, the given function is the solution of the corresponding differential equation.