Solveeit Logo

Question

Mathematics Question on Differential equations

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: y=x sin x : xy'=$$y+x\sqrt{x^2-y^2}(x\neq 0\,and x>y\,or x<-y)

Answer

y=x sin x
Differentiating both sides of this equation with respect to x, we get:
y=ddx(xsinx)y'=\frac{d}{dx}(x\sin x)

y=sinx.ddx(x)+x.ddx(sinx)\Rightarrow y'=\sin x.\frac{d}{dx}(x)+x.\frac{d}{dx}(\sin x)

y=sinx+cosxy'=\sin x+ \cos x
Substituting the value of y' in the given differential equation, we get:
L.H.S.= xy=x(sinx+cosx)xy'=x(\sin x+ \cos x)

=x sin x+x2 cos x

= y+x2.1sin2xy+x^2. \sqrt{1-\sin^2x}

= y+x21(yx)2y+x^2\sqrt{1-\bigg(\frac{y}{x}\bigg)^2}

=y+xy2x2y+x\sqrt{y^2-x^2}
=R.H.S.

Hence,the given fumction is the solution of the corresponding differential equation.