Solveeit Logo

Question

Mathematics Question on Differential equations

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: y=1+x2:y=xy1+x2y=\sqrt{1+x^2}\::y'=\frac{xy}{1+x^2}

Answer

y=1+x2y=\sqrt{1+x^2}

Differentiating both sides of the equation with respect to x, we get:

y=ddx(1+x2)y'=\frac{d}{dx}(\sqrt{1+x^2})

y=121+x2.ddx(1+x2)y'=\frac{1}{2 \sqrt{1+x^2}}. \frac{d}{dx}(1+x^2)

y=2x21+x2y'=\frac{2x}{2\sqrt{1+x^2}}

y=x1+x2y'=\frac{x}{\sqrt{1+x^2}}

y=x1+x21+x2\Rightarrow y' = \frac{x}{1+x^2} *\sqrt{1+x^2}

y=x1+x2.y\Rightarrow y'=\frac{x}{1+x^2}.y

y=xy1+x2\Rightarrow y'=\frac{xy}{1+x^2}

∴L.H.S.=R.H.S.

Hence, the given function is the solution of the corresponding differential equation.