Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Verify Rolle’s Theorem for the function f(x)=x2+2x8,x[4,2]f(x)=x^2+2x-8,x∈[-4,2]

Answer

The given function,f(x)=x2+2x8f(x)=x^2+2x-8,being a polynomial function, is continuous in [4,2][−4,2] and is differentiable in (4,2).(−4,2).
f(4)=(4)2+2(4)8=1688=0f(−4)=(−4)^2+2(−4)-8=16-8-8=0
f(2)=(2)2+2×28=4+48=0f(2)=(2)^2+2\times2-8=4+4-8=0
f(4)=f(2)=0∴ f(−4)=f(2)=0
⇒ The value of f(x)f(x) at −4 and 2 coincides.
Rolle’s Theorem states that there is a point c(4,2)c∈(−4,2) such that f(c)=0f'(c)=0
f(x)=x2+2x8f(x)=x^2+2x-8
f(x)=2x+2⇒f'(x)=2x+2
f(c)=0∴f'(c)=0
2c+2=0⇒2c+2=0
c=1⇒c=-1,where c=1[4,2]c=-1∈[-4,2]
Hence, Rolle’s Theorem is verified for the given function.