Solveeit Logo

Question

Question: Verify Rolle’s Theorem for the function \(f\left( x \right)=\log \left\\{ \dfrac{{{x}^{2}}+ab}{\le...

Verify Rolle’s Theorem for the function
f\left( x \right)=\log \left\\{ \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right\\}
In the interval [a, b] where, 0[a,b]0\notin \left[ a,b \right]

Explanation

Solution

Hint: Use the basic properties of logarithm and simplify f (x). Differentiate it to get f(x){{f}^{'}}\left( x \right) put f(c)=0,x=cf(x){{f}^{'}}\left( c \right)=0,x=c\Rightarrow {{f}^{'}}\left( x \right) and find the relation connect a, b, and c.

Complete step-by-step answer:
Rolle’s Theorem states that any real values differentiable function that attain equal value at two distinct points have at least one stationary point somewhere between them that is a point where the first derivative is zero. Here we have been given the function,
f\left( x \right)=\log \left\\{ \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right\\}
We know the basic logarithmic identities that,
log(ab)=logalogb log(ab)=loga+logb \begin{aligned} & \log \left( \dfrac{a}{b} \right)=\log a-\log b \\\ & \log \left( ab \right)=\log a+\log b \\\ \end{aligned}
Now apply all these identities in f (x)
f(x)=log(x2+ab(a+b)x)...................(i) =log(x+ab)log[(a+b)x] =log(x2+ab)[log(a+b)+logx] f(x)=log(x2+ab)log(a+b)logx....................(ii) \begin{aligned} & f\left( x \right)=\log \left( \dfrac{{{x}^{2}}+ab}{\left( a+b \right)x} \right)...................\left( i \right) \\\ & =\log \left( {{x}^{{}}}+ab \right)-\log \left[ \left( a+b \right)x \right] \\\ & =\log \left( {{x}^{2}}+ab \right)-\left[ \log \left( a+b \right)+\log x \right] \\\ & f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log x....................\left( ii \right) \\\ \end{aligned}
Now this is a continuous function of x in [a, b]. Now let us differentiate equation (ii) with respect to x, we get
f(x)=log(x2+ab)log(a+b)log(x) ddxlogx=1x f(x)=2xx2+abo1x f(x)=2xx2+ab1x........................(iii) \begin{aligned} & f\left( x \right)=\log \left( {{x}^{2}}+ab \right)-\log \left( a+b \right)-\log \left( x \right) \\\ & \dfrac{d}{dx}\log x=\dfrac{1}{x} \\\ & {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-o-\dfrac{1}{x} \\\ & \therefore {{f}^{'}}\left( x \right)=\dfrac{2x}{{{x}^{2}}+ab}-\dfrac{1}{x}........................\left( iii \right) \\\ \end{aligned}
Since x[a,b]x0x\in \left[ a,b \right]\Rightarrow x\ne 0
Thus f (x) is differential in [a, b]. Now put x = a in equation (i)
f(a)=log(a2+ab(a+b)a)=log(a2+aba2+ab)=log1=0 f(b)=log(b2+ab(a+b)b)=log(b2+abab+b2)=log1=0 \begin{aligned} & f\left( a \right)=\log \left( \dfrac{{{a}^{2}}+ab}{\left( a+b \right)a} \right)=\log \left( \dfrac{{{a}^{2}}+ab}{{{a}^{2}}+ab} \right)=\log 1=0 \\\ & f\left( b \right)=\log \left( \dfrac{{{b}^{2}}+ab}{\left( a+b \right)b} \right)=\log \left( \dfrac{{{b}^{2}}+ab}{ab+{{b}^{2}}} \right)=\log 1=0 \\\ \end{aligned}
Thus f (x) satisfies all the condition of Rolle’s Theorem and therefor their exist at least one point x = c in (a, b) such that f(c)=0{{f}^{'}}\left( c \right)=0. Now put x = c in equation (iii)
2cc2+ab1c=0\dfrac{2c}{{{c}^{2}}+ab}-\dfrac{1}{c}=0
Now let us simplify the above expression.
2c2(c2+ab)c(c2+ab)=0 2c2(c2+ab)=0 2c2c2ab=0 c2=abc=1ab \begin{aligned} & \dfrac{2{{c}^{2}}-\left( {{c}^{2}}+ab \right)}{c\left( {{c}^{2}}+ab \right)}=0 \\\ & \Rightarrow 2{{c}^{2}}-\left( {{c}^{2}}+ab \right)=0 \\\ & 2{{c}^{2}}-{{c}^{2}}-ab=0 \\\ & \therefore {{c}^{2}}=ab\Rightarrow c=1\sqrt{ab} \\\ \end{aligned}
Out of these two values c=abc=\sqrt{ab} , lies between a and b. Thus Rolle’s Theorem is verified in the interval [a, b]

Note: Rolle’s Theorem is a special case of mean value theorem. Now Rolle’s Theorem is different from Lagrange’s mean Value theorem. If a function is continuous in [a, b] and differentiate at open interval (a, b), then x = c exist in (a, b) such that f(c)=0{{f}^{'}}\left( c \right)=0 Remember this point in Rolle’s Theorem.