Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Verify Mean Value Theorem,if f(x)=x35x23xf(x)=x^3-5x^2-3x in the interval [a,b][a,b],where a=1a=1 and b=3b=3.Find all c(1,3)c∈(1,3) for which f(c)=0f'(c)=0

Answer

The given function is f(x)=x35x23xf(x)=x^3-5x^2-3x
ff, being a polynomial function, is continuous in [1,3][1,3] and is differentiable in (1,3)(1,3) whose derivative is 3x210x3.3x^2−10x−3.
f(1)=135(1)23×1=7f(1)=1^3-5(1)^2-3\times1=-7
f(3)=(3)35×(3)23×3=27f(3)=(3)^3-5\times(3)^2-3\times3=-27
f(b)f(a)ba=f(3)f(1)31∴\frac{f(b)-f(a)}{b-a}=\frac{f(3)-f(1)}{3-1}
=27(7)31=10=\frac{-27-(-7)}{3-1}=-10
Mean Value Theorem states that there is a point c(1,3)c∈(1,3) such that f(c)=10f'(c)=-10
f(c)=10f'(c)=-10
3c210c3=10⇒3c^2-10c-3=10
3c210c+7=0⇒3c^2-10c+7=0
3c23c7c+7=0⇒3c^2-3c-7c+7=0
3c(c1)7(c1)=0⇒3c(c-1)-7(c-1)=0
(c1)(3c7)=0⇒(c-1)(3c-7)=0
c=1,73⇒c=1,\frac{7}{3},where c=73(1,3)c=\frac{7}{3}∈(1,3)
Hence, Mean Value Theorem is verified for the given function and c=73(1,3)c=\frac{7}{3}∈(1,3) is the only point for which f(c)=0f'(c)=0