Question
Question: Verify Cayley-Hamilton Theorem for the matrix A = [[2, 1, 2], [5, 3, 3], [- 1, 0, - 2]]...
Verify Cayley-Hamilton Theorem for the matrix A = [[2, 1, 2], [5, 3, 3], [- 1, 0, - 2]]
Verified
Solution
To verify the Cayley-Hamilton Theorem for a matrix A, we need to show that the matrix A satisfies its own characteristic equation. The characteristic equation is given by ∣A−λI∣=0, where I is the identity matrix and λ is an eigenvalue.
Given matrix: A=25−113023−2
Step 1: Find the characteristic equation
First, form the matrix A−λI: A−λI=2−λ5−113−λ023−2−λ
Now, calculate the determinant ∣A−λI∣: We will expand the determinant along the second column (C2) because it contains a zero, simplifying the calculation. ∣A−λI∣=−1⋅5−13−2−λ+(3−λ)⋅2−λ−12−2−λ−0⋅2−λ513
=−1[5(−2−λ)−3(−1)]+(3−λ)[(2−λ)(−2−λ)−2(−1)] =−1[−10−5λ+3]+(3−λ)[−(2−λ)(2+λ)+2] =−1[−7−5λ]+(3−λ)[−(4−λ2)+2] =7+5λ+(3−λ)[λ2−4+2] =7+5λ+(3−λ)[λ2−2] =7+5λ+3λ2−6−λ3+2λ =−λ3+3λ2+(5+2)λ+(7−6) =−λ3+3λ2+7λ+1
Setting the determinant to zero, the characteristic equation is: −λ3+3λ2+7λ+1=0 Multiplying by -1, we get: λ3−3λ2−7λ−1=0
Step 2: Verify P(A)=O
According to the Cayley-Hamilton Theorem, if P(λ)=λ3−3λ2−7λ−1, then P(A)=A3−3A2−7A−I must be equal to the null matrix O.
First, calculate A2: A2=A⋅A=25−113023−225−113023−2 A2=(2)(2)+(1)(5)+(2)(−1)(5)(2)+(3)(5)+(3)(−1)(−1)(2)+(0)(5)+(−2)(−1)(2)(1)+(1)(3)+(2)(0)(5)(1)+(3)(3)+(3)(0)(−1)(1)+(0)(3)+(−2)(0)(2)(2)+(1)(3)+(2)(−2)(5)(2)+(3)(3)+(3)(−2)(−1)(2)+(0)(3)+(−2)(−2) A2=4+5−210+15−3−2+0+22+3+05+9+0−1+0+04+3−410+9−6−2+0+4 A2=7220514−13132
Next, calculate A3: A3=A2⋅A=7220514−1313225−113023−2 A3=(7)(2)+(5)(5)+(3)(−1)(22)(2)+(14)(5)+(13)(−1)(0)(2)+(−1)(5)+(2)(−1)(7)(1)+(5)(3)+(3)(0)(22)(1)+(14)(3)+(13)(0)(0)(1)+(−1)(3)+(2)(0)(7)(2)+(5)(3)+(3)(−2)(22)(2)+(14)(3)+(13)(−2)(0)(2)+(−1)(3)+(2)(−2) A3=14+25−344+70−130−5−27+15+022+42+00−3+014+15−644+42−260−3−4 A3=36101−72264−32360−7
Now, substitute A3,A2,A and I into the characteristic equation: A3−3A2−7A−I =36101−72264−32360−7−37220514−13132−725−113023−2−100010001
=36101−72264−32360−7−216601542−39396−1435−772101421−14−100010001
=(36−21−14−1)(101−66−35−0)(−7−0−(−7)−0)(22−15−7−0)(64−42−21−1)(−3−(−3)−0−0)(23−9−14−0)(60−39−21−0)(−7−6−(−14)−1)
=(15−14−1)(35−35)(−7+7)(7−7)(22−21−1)(−3+3)(14−14)(21−21)(−13+14−1)
=000000000=O
Since A3−3A2−7A−I=O, the Cayley-Hamilton Theorem is verified for the given matrix A.