Question
Mathematics Question on Determinants
Verify A(adj A)=(adj A)A=∣A∣I.
1\3\1−1002−23
Answer
A=1\3\1−1002−23
IAI=1(0-0)+1(9+2)+2(0-0)=11
IAII=1\0\001000111\0\001100011
Now,A11=0,A12=-(9+2)=-11, A13=0
A21=-(-3-0)=3, A22=3-2=1,A23=-(0+1)=-1
A31=2-0=2, A32=-(-2-6)=8, A33=0+3=3
therefore adj A=[032 -1118 0-13]
Now,A(adjA)= 1\3\1−1002−230−11\031−12183
=0+11+0\0+0+0\0+0+03−1−29+0+23+0−32−8+66+0−62+0+9
=11\0\001100011
Also ,(adjA).A=0−11\031−121831\3\1−1002−23
=0+9+2−11+3+8\0−3+30+0+011+0+00+0+00−6+6−22−2+240+2+9
=11\0\001100011
Hence A(adjA)=(adj A)A=IAII.