Solveeit Logo

Question

Physics Question on Dimensional Analysis

Velocity (v) and acceleration (a) in two systems of units 1 and 2 are related as
v2=nm2v1v_2=\frac{n}{m^2}v_1 and a2=a1mna_2=\frac{a_1}{mn}
respectively. Here m and n are constants. The relations for distance and time in two systems respectively are :

A

n3m3L1=L2\frac{n^3}{m_3}L_1=L_2 andn2mT1=T2\frac{n^2}{m}T_1=T_2

B

L1=n4m2L2L_1=\frac{n^4}{m^2}L_2 and T1=n2mT2T_1=\frac{n^2}{m}T_2

C

L1=n2mL2L_1=\frac{n^2}{m}L_2 and T1=n4m2T2T_1=\frac{n^4}{m^2}T_2

D

n2mL1=L2\frac{n^2}{m}L_1=L_2 and n4m2T1=T2\frac{n^4}{m^2}T_1=T_2

Answer

n3m3L1=L2\frac{n^3}{m_3}L_1=L_2 andn2mT1=T2\frac{n^2}{m}T_1=T_2

Explanation

Solution

The correct answer is (A) : n3m3L1=L2\frac{n^3}{m^3}L_1=L_2 and n2mT1=T2\frac{n^2}{m}T_1=T_2
[L]=[v2][a][L]=\frac{[v^2]}{[a]}
so
[v2]2[a2]=[nm2v1]2[a1mn]\frac{[v_2]^2}{[a_2]}=\frac{[\frac{n}{m^2}v_1]^2}{[\frac{a_1}{mn}]}
[v2]2[a2]=n3m3[v1]2[a1]\frac{[v_2]^2}{[a_2]}=\frac{n^3}{m^3} \frac{[v_1]^2}{[a_1]}
or [L2]=n3m3[L1][L_2]=\frac{n^3}{m^3}[L_1]
Similarly
[T]=[v][a][T]=\frac{[v]}{[a]}
So,
[T2]=n2m[T1][T_2]=\frac{n^2}{m}[T1]