Solveeit Logo

Question

Physics Question on Motion in a straight line

Velocity (v) and acceleration (a) in two systems of units 1 and 2 are related as v2v_2=\frac {n}{m^2}$$v_1 and a2a_2= a1mn\frac {a1}{mn} respectively. Here m and n are constants. The relations for distance and time in two systems respectively are :

A

\frac{n^3}{m^3}$$L_1=L2L_2 and \frac{n2}{m}$$T_1=T2T_2

B

L1L_1=n4/m2L2L_2 and T1T_1=n2m\frac{n^2}{m}T2

C

L1L_1=\frac{n^2}{m}$$L_2 and T1T_1=n4m2\frac{n^4}{m_2}T2

D

\frac{n^2}{m}$$L_1=L2L_2 and \frac{n^4}{m^2}$$T_1=T2T_2

Answer

\frac{n^3}{m^3}$$L_1=L2L_2 and \frac{n2}{m}$$T_1=T2T_2

Explanation

Solution

[L]=[v2][a]\frac{[v^2]}{[a]}

So, [v2]2[a2]=[nm2v1]2[a1mn]\frac{[\frac{n}{m^2}v_1]^2}{[\frac{a_1}{mn}]}

[v2]2[a2]=\frac{n^3}{m^3}$$\frac{[v_1]^2}{[a_1]} or [L2]=n3m3\frac{n^3}{m^3}[L1]

Similarly, [T]=[v][a]\frac{[v]}{[a]}

So, [T2]=n2m\frac{n^2}{m}[T1]

\therefore The correct option is (A): \frac{n^3}{m^3}$$L_1=L2L_2 and \frac{n2}{m}$$T_1=T2T_2