Solveeit Logo

Question

Question: Vectors \(\overrightarrow{A}\)and \(\overrightarrow{B}\)include an angle \(\theta\)between them. If ...

Vectors A\overrightarrow{A}and B\overrightarrow{B}include an angle θ\thetabetween them. If (A+B)(\overrightarrow{A} + \overrightarrow{B}) and (AB)(\overrightarrow{A} - \overrightarrow{B}) respectively subtend angles α\alphaand β\betawith A\overrightarrow{A}, then (tanα+tanβ)(\tan\alpha + \tan\beta) is

A

(ABsinθ)(A2+B2cos2θ)\frac{(AB\sin\theta)}{(A^{2} + B^{2}\cos^{2}\theta)}

B

(2ABsinθ)(A2B2cos2θ)\frac{(2AB\sin\theta)}{(A^{2} - B^{2}\cos^{2}\theta)}

C

(A2sin2θ)(A2+B2cos2θ)\frac{(A^{2}\sin^{2}\theta)}{(A^{2} + B^{2}\cos^{2}\theta)}

D

(B2sin2θ)(A2B2cos2θ)\frac{(B^{2}\sin^{2}\theta)}{(A^{2} - B^{2}\cos^{2}\theta)}

Answer

(2ABsinθ)(A2B2cos2θ)\frac{(2AB\sin\theta)}{(A^{2} - B^{2}\cos^{2}\theta)}

Explanation

Solution

tanα=BsinθA+Bcosθ\tan\alpha = \frac{B\sin\theta}{A + B\cos\theta} ……(i)

Where α\alphais the angle made by the vector

(A+B)(\overset{\rightarrow}{A} + \overset{\rightarrow}{B}) with A\overset{\rightarrow}{A}.

Similarly, tanβ=BsinθABcosθ\tan\beta = \frac{B\sin\theta}{A - B\cos\theta} …... (ii)

Where β\betais the angle made by the vector (AB)(\overset{\rightarrow}{A} - \overset{\rightarrow}{B}) with A\overset{\rightarrow}{A}.

Note that the angle between A\overset{\rightarrow}{A} and (B- \overset{\rightarrow}{B})is

(1800θ).(180^{0} - \theta). Adding (i) and (ii), we get

tanα+tanβ=BsinθA+Bcosθ+BsinθABcosθ\tan\alpha + \tan\beta = \frac{\mathbf{B}\sin\theta}{A + B\cos\theta} + \frac{B\sin\theta}{A - B\cos\theta}

=ABsinθB2sinθcosθ+ABsinθ+B2sinθcosθ(A+Bcosθ)(ABcosθ)=2ABsinθ(A2B2cos2θ)= \frac{AB\sin\theta - B^{2}\sin\theta\cos\theta + AB\sin\theta + B^{2}\sin\theta\cos\theta}{(A + B\cos\theta)(A - B\cos\theta)} = \frac{2AB\sin\theta}{(A^{2} - B^{2}\cos^{2}\theta)}