Question
Question: Vectors \(\overrightarrow{A}\)and \(\overrightarrow{B}\)include an angle \(\theta\)between them. If ...
Vectors Aand Binclude an angle θbetween them. If (A+B) and (A−B) respectively subtend angles αand βwith A, then (tanα+tanβ) is
A
(A2+B2cos2θ)(ABsinθ)
B
(A2−B2cos2θ)(2ABsinθ)
C
(A2+B2cos2θ)(A2sin2θ)
D
(A2−B2cos2θ)(B2sin2θ)
Answer
(A2−B2cos2θ)(2ABsinθ)
Explanation
Solution
tanα=A+BcosθBsinθ ……(i)
Where αis the angle made by the vector
(A→+B→) with A→.
Similarly, tanβ=A−BcosθBsinθ …... (ii)
Where βis the angle made by the vector (A→−B→) with A→.
Note that the angle between A→ and (−B→)is
(1800−θ). Adding (i) and (ii), we get
tanα+tanβ=A+BcosθBsinθ+A−BcosθBsinθ
=(A+Bcosθ)(A−Bcosθ)ABsinθ−B2sinθcosθ+ABsinθ+B2sinθcosθ=(A2−B2cos2θ)2ABsinθ