Solveeit Logo

Question

Question: Vectors \(\overrightarrow{A}\) and \(\overrightarrow{B}\) are shown. What is the magnitude of a vect...

Vectors A\overrightarrow{A} and B\overrightarrow{B} are shown. What is the magnitude of a vector C\overrightarrow{C} if C=AB\overrightarrow{C}=\overrightarrow{A}-\overrightarrow{B}?

A. 403\text{A}\text{. }40\sqrt{3}
B. 402\text{B}\text{. }40\sqrt{2}
C. 40\text{C}\text{. }40
D. 20\text{D}\text{. 2}0

Explanation

Solution

Draw the vector (B)\left( -\overrightarrow{B} \right) and find the angle between the vectors A\overrightarrow{A} and (B)\left( -\overrightarrow{B} \right). The magnitude of vector (B)\left( -\overrightarrow{B} \right) is equal to the magnitude of vector B\overrightarrow{B}. However, both the vectors are opposite directions. Then use the formula for the magnitude of the resultant of two vectors.

Formula used: R=A2+B2+2ABcosθR=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\cos \theta }

Complete step by step answer:
The vectors A\overrightarrow{A} and B\overrightarrow{B} are given. We are asked to find the magnitude of the vector C=AB\overrightarrow{C}=\overrightarrow{A}-\overrightarrow{B}. This vector addition can also be written as C=A+(B)\overrightarrow{C}=\overrightarrow{A}+\left( -\overrightarrow{B} \right).
Let us first draw the vector (B)\left( -\overrightarrow{B} \right). Vector (B)\left( -\overrightarrow{B} \right) is a vector whose magnitude is equal to the magnitude of vector B\overrightarrow{B} but its direction is opposite to the direction of B\overrightarrow{B} (as shown).

From the figure we get to know that the angle between the vectors A\overrightarrow{A} and (B)\left( -\overrightarrow{B} \right) is 120{{120}^{\circ }}.
Let us know use the formula for the magnitude of the resultant of the two vectors, i.e. R=A2+B2+2ABcosθR=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\cos \theta } ….. (i), where are R is the magnitude of the resultant, A and B are the magnitudes of the two vectors and θ\theta is the angle between the two vectors.
In this case, R = C, A = 40.
The magnitude of (B)\left( -\overrightarrow{B} \right) is equal to the magnitude of B\overrightarrow{B}. Therefore, B = 40.
And θ=120\theta ={{120}^{\circ }}.
Substitute the values in (i).
C=402+402+2(40)(40)cos120\Rightarrow C=\sqrt{{{40}^{2}}+{{40}^{2}}+2(40)(40)\cos {{120}^{\circ }}}.
The value of cos120=12\cos {{120}^{\circ }}=-\dfrac{1}{2}.
C=402+402+2(40)(40)(12)=402+402402=402=40\Rightarrow C=\sqrt{{{40}^{2}}+{{40}^{2}}+2(40)(40)\left( -\dfrac{1}{2} \right)}=\sqrt{{{40}^{2}}+{{40}^{2}}-{{40}^{2}}}=\sqrt{{{40}^{2}}}=40.
This means that the magnitude of C\overrightarrow{C} is 40.

So, the correct answer is “Option C”.

Note: Alternative solution:
The magnitude of resultant of C=AB\overrightarrow{C}=\overrightarrow{A}-\overrightarrow{B}, is given as C=A2+B22ABcosθC=\sqrt{{{A}^{2}}+{{B}^{2}}-2AB\cos \theta } ….. (1), where θ\theta is the angle between the two vectors A\overrightarrow{A} and B\overrightarrow{B}.
Therefore, A = B = 40 and θ=60\theta ={{60}^{\circ }}.
Substitute the values in (1).
C=402+4022(40)(40)cos60=402+4022(40)(40)(12)=402+402402=402=40\Rightarrow C=\sqrt{{{40}^{2}}+{{40}^{2}}-2(40)(40)\cos {{60}^{\circ }}}=\sqrt{{{40}^{2}}+{{40}^{2}}-2(40)(40)\left( \dfrac{1}{2} \right)}=\sqrt{{{40}^{2}}+{{40}^{2}}-{{40}^{2}}}=\sqrt{{{40}^{2}}}=40.