Solveeit Logo

Question

Physics Question on Motion in a plane

Vector which is perpendicular to acosθi^+bsinθj^a \, \cos \theta \hat i + b \, \sin \, \theta \hat j is

A

bsinθi^acosθj^b \sin \, \theta \hat i - a \, \cos \, \theta \hat j

B

1asinθi^1bcosθj^\frac{1}{a} \sin \, \theta \hat i - \frac{1}{b} \cos \, \theta \hat j

C

5k^5 \hat k

D

All of these

Answer

All of these

Explanation

Solution

From definition of dot product of vectors, we have
x.y=xycosθx . y = xy \cos \, \theta
When 35mmθ=90,cos90=035mm \theta = 90^\circ , cos \, 90^\circ = 0
x.y=0\therefore x . y = 0
Given,x=acosθi^+bsinθj^ x = a \cos \, \theta \, \hat i + b \sin \, \theta \, \hat j
y=bsinθi^acosθj^y = b \sin \, \theta \hat i - a \cos \, \theta \hat j
x.y=(acosθi^+bsinθj^)(bsinθi^acosθj^)x . y = (a \cos \, \theta \hat i + b \sin \, \theta \hat j) (b \sin \, \theta \hat i - a \cos \, \theta \hat j)
x.y=absinθcosθabsinθcosθ=0x . y = ab \sin \, \theta \cos \, \theta - ab \sin \, \theta \cos \, \theta = 0
Hence, vectors are perpendicular.
Similarly for options (b) and (c) also x . y = 0