Solveeit Logo

Question

Physics Question on Vector basics

Vector which is perpendicular to acosθi^+bsinθj^a\,\cos \,\theta \,\hat{i}+b\,\sin \,\theta \,\,\hat{j} is

A

bsinθi^acosθj^b\,\sin \,\theta \,\hat{i}-a\,\cos \,\theta \,\hat{j}

B

1asinθi^acosθj^\frac{1}{a}\,\sin \,\theta \,\hat{i}-a\,\cos \,\theta \,\hat{j}

C

5k^5\hat{k}

D

All of the above

Answer

All of the above

Explanation

Solution

From definition of dot product of vectors, we have
x.y=xycosθx\,.\,y=xy\,\,\cos \,\,\theta
When θ=90o,cos90o=0\theta ={{90}^{o}},\,\,\,\cos \,\,{{90}^{o}}=0
\therefore x.y=0x\,.\,y=0
Given, x=acosθi^+bsinθj^x=a\,\cos \,\theta \,\hat{i}+b\,\sin \,\theta \,\hat{j}
y=bsinθi^acosθj^y=b\,sin\,\,\theta \,\,\hat{i}-a\,\cos \,\,\theta \,\hat{j}
x.y=(acosθi^+bsinθj^)x\,.\,y=(a\,\cos \,\,\theta \,\,\hat{i}+b\,sin\,\,\theta \,\hat{j})
(bsinθi^acosθj^)(b\,sin\,\,\theta \,\,\hat{i}-a\,\cos \,\,\theta \,\hat{j})
x.y=absinθcosθabsinθcosθ=0x\,.\,y=ab\,\,\sin \,\theta \,\,\cos \,\theta \,-\,ab\,\,\,\sin \,\theta \,\,\cos \,\theta \,=0
Hence, vectors are perpendicular.
Similarly for option and also
x.y=0x.y=0