Solveeit Logo

Question

Question: Vector \(\overset{\rightarrow}{R}\)is the resultant of the vectors \(\overset{\rightarrow}{A}\)and \...

Vector R\overset{\rightarrow}{R}is the resultant of the vectors A\overset{\rightarrow}{A}and B\overset{\rightarrow}{B}. Ratio of minimum value of |R\overset{\rightarrow}{R}| and maximum value of |R\overset{\rightarrow}{R}| is 14\frac{1}{4}. Then AB\frac{|\overset{\rightarrow}{A}|}{|\overset{\rightarrow}{B}|}may be –

A

41\frac{4}{1}

B

21\frac{2}{1}

C

35\frac{3}{5}

D

14\frac{1}{4}

Answer

35\frac{3}{5}

Explanation

Solution

RminRmax\frac{|\overset{\rightarrow}{R}|_{\min}}{|R|_{\max}}= 14\frac{1}{4}= ABA+B\frac{||\overset{\rightarrow}{A}| - |\overset{\rightarrow}{B}||}{||\overset{\rightarrow}{A}| + |\overset{\rightarrow}{B}||}

A+B|\overset{\rightarrow}{A}| + |\overset{\rightarrow}{B}|= 4 |AB|\overset{\rightarrow}{A}| - |\overset{\rightarrow}{B}||

If | A\overset{\rightarrow}{A}| > | B\overset{\rightarrow}{B}|

| A\overset{\rightarrow}{A}| + | B\overset{\rightarrow}{B}| = 4 ( | A\overset{\rightarrow}{A}| – | B\overset{\rightarrow}{B}| )

3 | A\overset{\rightarrow}{A}| = 5 | B\overset{\rightarrow}{B}| ̃ AB\frac{|\overset{\rightarrow}{A}|}{|\overset{\rightarrow}{B}|}= 53\frac{5}{3}

If | B\overset{\rightarrow}{B}| > | A\overset{\rightarrow}{A} |

A+B|\overset{\rightarrow}{A}| + |\overset{\rightarrow}{B}|= 4 ( BA|\overset{\rightarrow}{B}| - |\overset{\rightarrow}{A}|)

AB\frac{|\overset{\rightarrow}{A}|}{|\overset{\rightarrow}{B}|} = 35\frac{3}{5}