Solveeit Logo

Question

Question: Vector \[\overrightarrow c \] is perpendicular to vectors \[\overrightarrow a = (2, - 3,1)\] and \[\...

Vector c\overrightarrow c is perpendicular to vectors a=(2,3,1)\overrightarrow a = (2, - 3,1) and b=(1,2,3)\overrightarrow b = (1, - 2,3) satisfies the conditionc.(i+2j7k)=10\overrightarrow c .(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10. Then vector c\overrightarrow c is equal to
A. (7,5,1)(7,5,1)
B. (7,5,1)( - 7, - 5, - 1)
C. (1,1,1)(1,1, - 1)
D. (1,1,1)(-1, -1, - 1)

Explanation

Solution

Two vectors A and B are perpendicular if and only if their scalar product is equal to zero.
That is (A.B)=0(\overrightarrow A .\overrightarrow B ) = 0
Using this condition of perpendicular vectors we can find the value ofc\overrightarrow c and we will verify the answer found using the given second condition.

Complete step-by-step answer:
It is given that the vector c\overrightarrow c is perpendicular to vectors a=(2,3,1)\overrightarrow a = (2, - 3,1) and b=(1,2,3)\overrightarrow b = (1, - 2,3).
It is also given thatc.(i+2j7k)=10\overrightarrow c .(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10.
Since, c\overrightarrow c is perpendicular to a\overrightarrow a andb\overrightarrow b .
We can say thatc\overrightarrow c is the constant multiple of the cross product of a\overrightarrow a andb\overrightarrow b ,
That is c=λ(a×b)\overrightarrow c = \lambda (\overrightarrow a \times \overrightarrow b )… (1)
Where, λ\lambda is known as the constant multiplied with the cross product.
Now let us find the cross product of a\overrightarrow a andb\overrightarrow b ,
(\overrightarrow a \times \overrightarrow b ) = \left( {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\\2&{ - 3}&1\\\1&{ - 2}&3\end{array}} \right)
Let us solve the above matrix to find the value of cross product, we get,
(a×b)=(9+2)i^(61)j^+(4+3)k^(\overrightarrow a \times \overrightarrow b ) = ( - 9 + 2)\widehat i - (6 - 1\widehat {)j} + ( - 4 + 3)\widehat k
Which implies,
(a×b)=7i^5j^k^(\overrightarrow a \times \overrightarrow b ) = - 7\widehat i - 5\widehat j - \widehat k
Let us substitute the value of cross product in (1), we get,
c=λ(7i^5j^k^)\overrightarrow c = \lambda ( - 7\widehat i - 5\widehat j - \widehat k)
We have a second condition that,
c.(i+2j7k)=10\overrightarrow c .(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10
Now let us substitute the value ofc\overrightarrow c in the above condition, we get,
λ(7i^5j^k^).(i+2j7k)=10\lambda ( - 7\widehat i - 5\widehat j - \widehat k).(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10
By the definition of scalar product we multiply the like vectors and by simplifying we get,
λ(710+7)=10\lambda ( - 7 - 10 + 7) = 10
That is on solving we get,
10λ=10- 10\lambda = 10
Let us divide by 10 - 10 on both sides we get,
λ=1\lambda = - 1
Let us substitute the above value in the value of c\overrightarrow c we get,
c=(7i^+5j^+k^)\overrightarrow c = (7\widehat i + 5\widehat j + \widehat k)

So, the correct answer is “Option A”.

Additional information: The cross product (a×b)(\overrightarrow a \times \overrightarrow b ) is defined as a vector c that is perpendicular (orthogonal) to both “a” and “b”, with a direction given by the right-hand rule and a magnitude equal to the area of the parallelogram that the vectors span.
The cross product is defined by the formula
(\overrightarrow a \times \overrightarrow b ) = \left( {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\\\{{a_1}}&{{a_2}}&{{a_3}}\\\\{{b_1}}&{{b_2}}&{{b_3}}\end{array}} \right)

Note: Here in the given options, option (c) also satisfies the second condition c.(i+2j7k)=10\overrightarrow c .(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10 but the option (c) fails with the first condition that it is not perpendicular to a\overrightarrow a and b\overrightarrow b .