Solveeit Logo

Question

Question: Vector equation of the line 6x – 2 = 3y + 1 = 2z – 2 is :...

Vector equation of the line 6x – 2 = 3y + 1 = 2z – 2 is :

A

r\overrightarrow { \mathbf { r } } = i^\hat { \mathbf { i } } + k^\hat { \mathbf { k } } + l ( i^\hat { \mathbf { i } }j^\hat { \mathrm { j } } + k^\hat { \mathbf { k } } )

B

r\overrightarrow { \mathbf { r } } = i^\hat { \mathbf { i } } + 2 + k^\hat { \mathbf { k } } + l

C

= + k^\hat { \mathbf { k } } + l( + )

D

= 13\frac { 1 } { 3 }( + 3) + l( + 2 + 3)

Answer

= 13\frac { 1 } { 3 }( + 3) + l( + 2 + 3)

Explanation

Solution

Here,

x1/31/6\frac { x - 1 / 3 } { 1 / 6 } = y+1/31/3\frac { y + 1 / 3 } { 1 / 3 } = z11/2\frac { z - 1 } { 1 / 2 } …(i)

Line r\overrightarrow { \mathbf { r } } = + l can be written as

xa1b1\frac { x - a _ { 1 } } { b _ { 1 } } = ya2b2\frac { y - a _ { 2 } } { b _ { 2 } } = za3b3\frac { z - a _ { 3 } } { b _ { 3 } }

Where = a1­ i^\hat { \mathbf { i } } + a2 + a3 k^\hat { \mathbf { k } }

and b\overrightarrow { \mathrm { b } } = b1 + b2 + a3 k^\hat { \mathbf { k } }

so the equation (i) can be written as :

+ l( + 2 + 3)