Solveeit Logo

Question

Question: Vector A+vector B+vector C=0 and the magnitude if A is equal to magnitude of B and magnitude of c is...

Vector A+vector B+vector C=0 and the magnitude if A is equal to magnitude of B and magnitude of c is equal to √2 times of magnitude A then the angle between vectors?

Answer

90°, 135°, 135°

Explanation

Solution

Let the magnitudes of the vectors be A=AA = |\vec{A}|, B=BB = |\vec{B}|, and C=CC = |\vec{C}|.

Given:

  1. A+B+C=0\vec{A} + \vec{B} + \vec{C} = 0
  2. A=B|\vec{A}| = |\vec{B}|
  3. C=2A|\vec{C}| = \sqrt{2} |\vec{A}|

Let A=k|\vec{A}| = k. Then B=k|\vec{B}| = k and C=2k|\vec{C}| = \sqrt{2} k.

We need to find the angles between pairs of vectors. We can use the dot product relation for each pair.

1. Angle between A\vec{A} and B\vec{B} (θAB\theta_{AB}):

From the given condition, A+B=C\vec{A} + \vec{B} = -\vec{C}.

Squaring both sides (taking the dot product of each side with itself):

(A+B)(A+B)=(C)(C)(\vec{A} + \vec{B}) \cdot (\vec{A} + \vec{B}) = (-\vec{C}) \cdot (-\vec{C})

A2+B2+2AB=C2|\vec{A}|^2 + |\vec{B}|^2 + 2 \vec{A} \cdot \vec{B} = |\vec{C}|^2

Using the definition of the dot product, AB=ABcosθAB\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta_{AB}:

A2+B2+2ABcosθAB=C2|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta_{AB} = |\vec{C}|^2

Substitute the magnitudes:

k2+k2+2(k)(k)cosθAB=(2k)2k^2 + k^2 + 2 (k)(k) \cos \theta_{AB} = (\sqrt{2} k)^2

2k2+2k2cosθAB=2k22k^2 + 2k^2 \cos \theta_{AB} = 2k^2

2k2cosθAB=02k^2 \cos \theta_{AB} = 0

Since k0k \neq 0, we have cosθAB=0\cos \theta_{AB} = 0.

Therefore, θAB=90\theta_{AB} = 90^\circ or π2\frac{\pi}{2} radians.

2. Angle between B\vec{B} and C\vec{C} (θBC\theta_{BC}):

From the given condition, B+C=A\vec{B} + \vec{C} = -\vec{A}.

Squaring both sides:

(B+C)(B+C)=(A)(A)(\vec{B} + \vec{C}) \cdot (\vec{B} + \vec{C}) = (-\vec{A}) \cdot (-\vec{A})

B2+C2+2BC=A2|\vec{B}|^2 + |\vec{C}|^2 + 2 \vec{B} \cdot \vec{C} = |\vec{A}|^2

Using BC=BCcosθBC\vec{B} \cdot \vec{C} = |\vec{B}| |\vec{C}| \cos \theta_{BC}:

B2+C2+2BCcosθBC=A2|\vec{B}|^2 + |\vec{C}|^2 + 2 |\vec{B}| |\vec{C}| \cos \theta_{BC} = |\vec{A}|^2

Substitute the magnitudes:

k2+(2k)2+2(k)(2k)cosθBC=k2k^2 + (\sqrt{2} k)^2 + 2 (k)(\sqrt{2} k) \cos \theta_{BC} = k^2

k2+2k2+22k2cosθBC=k2k^2 + 2k^2 + 2\sqrt{2} k^2 \cos \theta_{BC} = k^2

3k2+22k2cosθBC=k23k^2 + 2\sqrt{2} k^2 \cos \theta_{BC} = k^2

22k2cosθBC=k23k22\sqrt{2} k^2 \cos \theta_{BC} = k^2 - 3k^2

22k2cosθBC=2k22\sqrt{2} k^2 \cos \theta_{BC} = -2k^2

2cosθBC=1\sqrt{2} \cos \theta_{BC} = -1

cosθBC=12\cos \theta_{BC} = -\frac{1}{\sqrt{2}}

Therefore, θBC=135\theta_{BC} = 135^\circ or 3π4\frac{3\pi}{4} radians.

3. Angle between A\vec{A} and C\vec{C} (θAC\theta_{AC}):

From the given condition, A+C=B\vec{A} + \vec{C} = -\vec{B}.

Squaring both sides:

(A+C)(A+C)=(B)(B)(\vec{A} + \vec{C}) \cdot (\vec{A} + \vec{C}) = (-\vec{B}) \cdot (-\vec{B})

A2+C2+2AC=B2|\vec{A}|^2 + |\vec{C}|^2 + 2 \vec{A} \cdot \vec{C} = |\vec{B}|^2

Using AC=ACcosθAC\vec{A} \cdot \vec{C} = |\vec{A}| |\vec{C}| \cos \theta_{AC}:

A2+C2+2ACcosθAC=B2|\vec{A}|^2 + |\vec{C}|^2 + 2 |\vec{A}| |\vec{C}| \cos \theta_{AC} = |\vec{B}|^2

Substitute the magnitudes:

k2+(2k)2+2(k)(2k)cosθAC=k2k^2 + (\sqrt{2} k)^2 + 2 (k)(\sqrt{2} k) \cos \theta_{AC} = k^2

k2+2k2+22k2cosθAC=k2k^2 + 2k^2 + 2\sqrt{2} k^2 \cos \theta_{AC} = k^2

3k2+22k2cosθAC=k23k^2 + 2\sqrt{2} k^2 \cos \theta_{AC} = k^2

22k2cosθAC=k23k22\sqrt{2} k^2 \cos \theta_{AC} = k^2 - 3k^2

22k2cosθAC=2k22\sqrt{2} k^2 \cos \theta_{AC} = -2k^2

2cosθAC=1\sqrt{2} \cos \theta_{AC} = -1

cosθAC=12\cos \theta_{AC} = -\frac{1}{\sqrt{2}}

Therefore, θAC=135\theta_{AC} = 135^\circ or 3π4\frac{3\pi}{4} radians.

The angles between the vectors are 9090^\circ, 135135^\circ, and 135135^\circ.