Question
Question: Vector A+vector B+vector C=0 and the magnitude if A is equal to magnitude of B and magnitude of c is...
Vector A+vector B+vector C=0 and the magnitude if A is equal to magnitude of B and magnitude of c is equal to √2 times of magnitude A then the angle between vectors?
90°, 135°, 135°
Solution
Let the magnitudes of the vectors be A=∣A∣, B=∣B∣, and C=∣C∣.
Given:
- A+B+C=0
- ∣A∣=∣B∣
- ∣C∣=2∣A∣
Let ∣A∣=k. Then ∣B∣=k and ∣C∣=2k.
We need to find the angles between pairs of vectors. We can use the dot product relation for each pair.
1. Angle between A and B (θAB):
From the given condition, A+B=−C.
Squaring both sides (taking the dot product of each side with itself):
(A+B)⋅(A+B)=(−C)⋅(−C)
∣A∣2+∣B∣2+2A⋅B=∣C∣2
Using the definition of the dot product, A⋅B=∣A∣∣B∣cosθAB:
∣A∣2+∣B∣2+2∣A∣∣B∣cosθAB=∣C∣2
Substitute the magnitudes:
k2+k2+2(k)(k)cosθAB=(2k)2
2k2+2k2cosθAB=2k2
2k2cosθAB=0
Since k=0, we have cosθAB=0.
Therefore, θAB=90∘ or 2π radians.
2. Angle between B and C (θBC):
From the given condition, B+C=−A.
Squaring both sides:
(B+C)⋅(B+C)=(−A)⋅(−A)
∣B∣2+∣C∣2+2B⋅C=∣A∣2
Using B⋅C=∣B∣∣C∣cosθBC:
∣B∣2+∣C∣2+2∣B∣∣C∣cosθBC=∣A∣2
Substitute the magnitudes:
k2+(2k)2+2(k)(2k)cosθBC=k2
k2+2k2+22k2cosθBC=k2
3k2+22k2cosθBC=k2
22k2cosθBC=k2−3k2
22k2cosθBC=−2k2
2cosθBC=−1
cosθBC=−21
Therefore, θBC=135∘ or 43π radians.
3. Angle between A and C (θAC):
From the given condition, A+C=−B.
Squaring both sides:
(A+C)⋅(A+C)=(−B)⋅(−B)
∣A∣2+∣C∣2+2A⋅C=∣B∣2
Using A⋅C=∣A∣∣C∣cosθAC:
∣A∣2+∣C∣2+2∣A∣∣C∣cosθAC=∣B∣2
Substitute the magnitudes:
k2+(2k)2+2(k)(2k)cosθAC=k2
k2+2k2+22k2cosθAC=k2
3k2+22k2cosθAC=k2
22k2cosθAC=k2−3k2
22k2cosθAC=−2k2
2cosθAC=−1
cosθAC=−21
Therefore, θAC=135∘ or 43π radians.
The angles between the vectors are 90∘, 135∘, and 135∘.