Solveeit Logo

Question

Question: Variation of log10 K with \(\frac { 1 } { \mathrm {~T} }\) is shown by the following graph in which ...

Variation of log10 K with 1 T\frac { 1 } { \mathrm {~T} } is shown by the following graph in which straight line is at 450, hence DH0 is :

A
  • 4.606 cal
B

– 4.606 cal

C

2 cal

D

– 2 cal

Answer

– 4.606 cal

Explanation

Solution

log K=logAΔH2.303RT\mathrm { K } = \log \mathrm { A } - \frac { \Delta \mathrm { H } } { 2.303 \mathrm { RT } }.

log .

log K=[ΔH2.303R]×1 T+logA\mathrm { K } = \left[ - \frac { \Delta \mathrm { H } } { 2.303 \mathrm { R } } \right] \times \frac { 1 } { \mathrm {~T} } + \log \mathrm { A }.