Solveeit Logo

Question

Chemistry Question on Solutions

Vapour pressure of pure water at 298K298 \,K is 23.8mmHg23.8 \,mm\, Hg. 50g50 \,g of urea is dissolved in 850g850\, g of water. The vapour pressure of water for this solution and its relative lowering are respectively.

A

23.8mmHg23.8\, mm \,Hg and 0.160.16

B

25.4mmHg25.4\, mm \,Hg and 0.020.02

C

30.2mmHg30.2\, mm \,Hg and 0.0200.020

D

23.4mmHg23.4\, mm \,Hg and 0.0170.017

Answer

23.4mmHg23.4\, mm \,Hg and 0.0170.017

Explanation

Solution

Given, p=23.8mmHgp^{\circ} = 23.8 \,mm \,Hg w2=50g,M2(urea)=60gmol1w_{2} = 50 \,g, M^{2} \left(urea\right) = 60\, g\, mol^{-1}, ps=?p_{s} =?, ppsp=?\frac{p^{\circ}-p_{s}}{p^{\circ}} = ? w1=850g,M1(water)=18gmol1w_{1} = 850 \, g, M_{1} \left(water\right) = 18 \, g\, mol^{-1} n2=5060=0.83\therefore n_{2} = \frac{50}{60} = 0.83, n1=85018=47.22n_{1} = \frac{850}{18} = 47.22 Applying Raoult s law, ppsp=n2n1+n2\frac{p^{\circ }-p_{s}}{p^{\circ }} = \frac{n_{2}}{n_{1}+n_{2}} or, ppsp=0.8347.22+0.83\frac{p^{\circ }-p_{s}}{p^{\circ }} = \frac{0.83}{47.22+0.83} =0.8348.05=0.017= \frac{0.83}{48.05} = 0.017 Thus, relative lowering of vapour pressure =0.017= 0.017 Again, Δpp=0.017\frac{\Delta p}{p^{\circ}} = 0.017 Δp=0.017×23.8\therefore \Delta p = 0.017 \times 23.8 pps=0.017×23.8p^{\circ} -p_{s} = 0.017 \times 23.8 ps=23.80.017×23.8p_{s} = 23.8 - 0.017 \times 23.8 ps=23.4mmHgp_{s} = 23.4\,mm\,Hg Thus, vapour pressure of water in the solution =23.4mmHg= 23.4\,mm\,Hg