Solveeit Logo

Question

Question: Values of x for which the sixth term of the expansion of E=\(\left\lbrack 3^{\log_{3}\sqrt{9^{|x - ...

Values of x for which the sixth term of the expansion of

E=[3log39x2+715log7[(4).3x29]]\left\lbrack 3^{\log_{3}\sqrt{9^{|x - 2|}}} + 7^{\frac{1}{5}\log_{7}\lbrack(4).3^{|x - 2|} - 9\rbrack} \right\rbrackis 567, is/are :

A

3

B

2

C

4

D

None

Answer

3

Explanation

Solution

Let y = 3log39x23{}{\log_{3}{}_{\sqrt{9^{|x - 2|}}}} z = 715log7[4.3x29]7^{\frac{1}{5}\log_{7}\lbrack 4.3^{|x - 2|} - 9\rbrack}

Žlog3y =log39x2\log_{3}\sqrt{9^{|x - 2|}} log7 z =15\frac{1}{5} log7[4.3|x–2| –9]

Ž y=9x2y = \sqrt{9^{|x - 2|}} z = (4.3|x–2| –9)1/5

Ž y = 3|x – 2| z = (4.3|x – 2| – 9)1/5

Now E = (y + z)7 and the sixth term is given by

t6 = 7C5 y2z5 Ž 21.(3|x – 2|)2.[(4.3|x – 2| – 9)1/5]5

= 567(given)

Ž 21.32|x – 2|.[4.3|x – 2| – 9] = 567 [put 3|x – 2| = k]

Ž 21.k2. [4.k – 9] = 567

Ž 4k3 – 9k2 – 27 = 0

Ž (k – 3)(4k2 + 3k + 9) = 0

Ž k = 3