Solveeit Logo

Question

Question: Value of the parameter 'a' such that the area bounded by y = a<sup>2</sup>x<sup>2</sup> + ax + 1, co...

Value of the parameter 'a' such that the area bounded by y = a2x2 + ax + 1, coordinate axes and the line x = 1, attains it's least value, is equal to

A

−1/4

B

−1/2

C

−3/2

D

-1

Answer

−3/2

Explanation

Solution

a2x2 + ax + 1 is clearly positive for all real values of x. Area under consideration,

Δ=01(a2x2+ax+1)dx=a23+a2+1\Delta = \int _ { 0 } ^ { 1 } \left( a ^ { 2 } x ^ { 2 } + a x + 1 \right) d x = \frac { a ^ { 2 } } { 3 } + \frac { a } { 2 } + 1

=16(2a2+3a+6)= \frac { 1 } { 6 } \left( 2 a ^ { 2 } + 3 a + 6 \right)

=16(2(a2+32a+916)+61816)= \frac { 1 } { 6 } \left( 2 \left( a ^ { 2 } + \frac { 3 } { 2 } a + \frac { 9 } { 16 } \right) + 6 - \frac { 18 } { 16 } \right)

=16(2(a+34)2+398)= \frac { 1 } { 6 } \left( 2 \left( a + \frac { 3 } { 4 } \right) ^ { 2 } + \frac { 39 } { 8 } \right)

Which is clearly minimum for a = −34\frac { 3 } { 4 }