Solveeit Logo

Question

Mathematics Question on Limits

Value of the following expression is limn\displaystyle \lim_{n \to \infty} 1n3(12+22+32+.....+n2)\frac{1}{n^{3}}\left(1^{2}+2^{2}+3^{2}+ ..... +n^{2}\right)

A

13\frac{1}{3}

B

16\frac{1}{6}

C

12\frac{1}{2}

D

23\frac{2}{3}

Answer

13\frac{1}{3}

Explanation

Solution

limn1n3(12+22+32++n2)\displaystyle \lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left(1^{2}+2^{2}+3^{2}+\ldots +n^{2}\right)
=limn1n3[n(n+1)(2n+1)6]=\displaystyle \lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left[\frac{n(n+1)(2 n+1)}{6}\right]
=limn(1+1n)(2+1n)6=\displaystyle \lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)}{6}
=1×26=13=\frac{1 \times 2}{6}=\frac{1}{3}