Solveeit Logo

Question

Question: Value of \(\text{tan15}{}^{\circ }\) (this question has multiple correct option) A.\(\dfrac{\sqrt{...

Value of tan15\text{tan15}{}^{\circ } (this question has multiple correct option)
A.313+1\dfrac{\sqrt{3}-1}{\sqrt{3}+1}
B.232-\sqrt{3}
C. 2+32+\sqrt{3}
D.31\sqrt{3}-1

Explanation

Solution

To calculate the value of tan15\text{tan15}{}^{\circ }, we can use tan(A-B)\text{tan(A-B)} and we can also use tan2A\text{tan2A}.

Complete step by step answer:
We have tan15\text{tan15}{}^{\circ }
WE can write it as,
tan15=tan(4530)\Rightarrow \text{tan15}{}^{\circ }=\text{tan(}{{45}^{\circ }}-{{30}^{\circ }}\text{)}
tan(15) = tan45tan301tan45×tan30\Rightarrow \text{tan(1}{{5}^{\circ }}\text{) = }\dfrac{\text{tan4}{{\text{5}}^{\circ }}-\text{tan3}{{\text{0}}^{\circ }}}{1-\text{tan4}{{\text{5}}^{\circ }}\times \text{tan3}{{\text{0}}^{\circ }}} \left\\{ \because \text{tan(A-B)}=\text{ }\dfrac{\text{tanA - tanB}}{1+\text{tanA}\times \text{tanB}} \right\\}
We know that , tan45=1\text{tan4}{{\text{5}}^{\circ }}=1 and tan30=13\text{tan3}{{\text{0}}^{\circ }}=\dfrac{1}{\sqrt{3}}
Hence, tan(15) = 1131+13\Rightarrow \text{tan(1}{{5}^{\circ }}\text{) = }\dfrac{1-\dfrac{1}{\sqrt{3}}}{1+\dfrac{1}{\sqrt{3}}}
tan(15)=3133+13\Rightarrow \text{tan(1}{{5}^{\circ }}\text{)}=\dfrac{\dfrac{\sqrt{3}-1}{\sqrt{3}}}{\dfrac{\sqrt{3}+1}{\sqrt{3}}}
tan(15)=313+1\Rightarrow \text{tan(1}{{5}^{\circ }}\text{)}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}
It is option A.
Now we can also write tan15\text{tan15}{}^{\circ }as,
tan(2×15)=tan(30)\text{tan(2}\times \text{15}{}^{\circ })=\text{tan}({{30}^{\circ }})
tan(2×15)=tan(2A)\text{tan(2}\times \text{15}{}^{\circ })=\text{tan(2A)}
And, tan(2A) = 2tanA1tan2A\text{tan(2A) = }\dfrac{2\text{tanA}}{1-\text{ta}{{\text{n}}^{2}}\text{A}}
Also, tan30=13\text{tan3}{{\text{0}}^{\circ }}=\dfrac{1}{\sqrt{3}}
Therefore,
tan(2×15)=tan30\text{tan(2}\times \text{15}{}^{\circ })=\text{tan3}{{\text{0}}^{\circ }}
2tan151tan215=13\Rightarrow \dfrac{2\text{tan1}{{\text{5}}^{\circ }}}{1-\text{ta}{{\text{n}}^{2}}{{15}^{\circ }}}=\dfrac{1}{\sqrt{3}}
2tan(15)×3=1tan215\Rightarrow 2\text{tan(}{{15}^{\circ }})\times \sqrt{3}=1-\text{ta}{{\text{n}}^{2}}{{15}^{\circ }}
tan215+23tan151=0\Rightarrow \text{ta}{{\text{n}}^{2}}{{15}^{\circ }}+2\sqrt{3}\text{tan1}{{\text{5}}^{\circ }}-1=0
Now we can let x=tan(15)x=\tan ({{15}^{\circ }})
Hence equation is
x2+23x1=0\Rightarrow {{x}^{2}}+2\sqrt{3}x-1=0
It is a quadratic equation of the form ax2+bx+c=0a{{x}^{2}}+bx+c=0 We can solve it by quadratic formula.
On comparing with ax2+bx+c=0a{{x}^{2}}+bx+c=0
a=1,b=23,c=1a=1\,,b=2\sqrt{3},\,c\,=-1
By quadratic formula we can write
x=b±b24ac2a\Rightarrow x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}
x=23±(23)24×1×12×1\Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{{{(2\sqrt{3})}^{2}}-4\times 1\times -1}}{2\times 1}
x=23±12+42\Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}
x=23±162\Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}
x=23±42\Rightarrow x=\dfrac{-2\sqrt{3}\pm 4}{2}
x=3±2\Rightarrow x=-\sqrt{3}\pm 2
On substituting x=tan(15)x=\tan ({{15}^{\circ }})
tan(15)=3+2ortan(15)=32\tan ({{15}^{\circ }})=-\sqrt{3}+2\,or\,\tan ({{15}^{\circ }})=-\sqrt{3}-2\,
We know tan15\text{tan1}{{\text{5}}^{\circ }}fall in 1st quadrant
Therefore, tan15>0\text{tan1}{{\text{5}}^{\circ }} > 0
Hence, tan15=23\text{tan1}{{\text{5}}^{\circ }}=2-\sqrt{3}

So, the correct answers are “Option A and B”.

Note: As in trigonometric we have value of general angle as 0,30,45,60,90{{0}^{\circ }},\,{{30}^{\circ }}\,,\,{{45}^{\circ }},\,{{60}^{\circ }},\,{{90}^{\circ }} which values we know from trigonometry table. As in given question we know tan15\text{tan1}{{\text{5}}^{\circ }}can’t be calculated directly then we have to transform given statement like tan15\text{tan1}{{\text{5}}^{\circ }}in expressing we can conclude like tan(45-30)\text{tan(4}{{\text{5}}^{\circ }}\text{-3}{{\text{0}}^{\circ }})and tan(2×15)\text{tan(2}\times \text{1}{{\text{5}}^{\circ }})we did in this question.