Question
Question: Value of \(\text{tan15}{}^{\circ }\) (this question has multiple correct option) A.\(\dfrac{\sqrt{...
Value of tan15∘ (this question has multiple correct option)
A.3+13−1
B.2−3
C. 2+3
D.3−1
Solution
To calculate the value of tan15∘, we can use tan(A-B) and we can also use tan2A.
Complete step by step answer:
We have tan15∘
WE can write it as,
⇒tan15∘=tan(45∘−30∘)
⇒tan(15∘) = 1−tan45∘×tan30∘tan45∘−tan30∘ \left\\{ \because \text{tan(A-B)}=\text{ }\dfrac{\text{tanA - tanB}}{1+\text{tanA}\times \text{tanB}} \right\\}
We know that , tan45∘=1 and tan30∘=31
Hence, ⇒tan(15∘) = 1+311−31
⇒tan(15∘)=33+133−1
⇒tan(15∘)=3+13−1
It is option A.
Now we can also write tan15∘as,
tan(2×15∘)=tan(30∘)
tan(2×15∘)=tan(2A)
And, tan(2A) = 1−tan2A2tanA
Also, tan30∘=31
Therefore,
tan(2×15∘)=tan30∘
⇒1−tan215∘2tan15∘=31
⇒2tan(15∘)×3=1−tan215∘
⇒tan215∘+23tan15∘−1=0
Now we can let x=tan(15∘)
Hence equation is
⇒x2+23x−1=0
It is a quadratic equation of the form ax2+bx+c=0 We can solve it by quadratic formula.
On comparing with ax2+bx+c=0
a=1,b=23,c=−1
By quadratic formula we can write
⇒x=2a−b±b2−4ac
⇒x=2×1−23±(23)2−4×1×−1
⇒x=2−23±12+4
⇒x=2−23±16
⇒x=2−23±4
⇒x=−3±2
On substituting x=tan(15∘)
tan(15∘)=−3+2ortan(15∘)=−3−2
We know tan15∘fall in 1st quadrant
Therefore, tan15∘>0
Hence, tan15∘=2−3
So, the correct answers are “Option A and B”.
Note: As in trigonometric we have value of general angle as 0∘,30∘,45∘,60∘,90∘ which values we know from trigonometry table. As in given question we know tan15∘can’t be calculated directly then we have to transform given statement like tan15∘in expressing we can conclude like tan(45∘-30∘)and tan(2×15∘)we did in this question.